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The Harald Bohr Centenary



Preface

These are the proceedings of the symposium held in Copenhagen, April 24-25, 1987, on 
the occasion of the centenary of Harald Bohr (April 22, 1887 - January 22, 1951). The 
symposium was arranged by the Danish Mathematical Society which appointed an 
organizing committee consisting of C. Berg, B. Fuglede, and L.-E. Lundberg. The 
scientific programme comprised 13 lectures of which 11 were given by invited foreign 
scholars. Former colleagues, students and friends of Harald Bohr profited from this 
occasion to commemorate the work and personality of a Danish mathematician of high 
international rank.

The organizing committee was happy to have the symposium opened by the rector of 
the University of Copenhagen, O. Nathan, a former student of Harald Bohr during 
those years of the war which they had to spend in Sweden.

The main achievement in the mathematical works of Harald Bohr - the theory of 
almost periodic functions - has developed in several directions during the past sixty 
years, and the papers in the present Proceedings will show some of these trends.

We take the opportunity of thanking all the participants for their presence and their 
scientific contribution to the symposium.

The Danish Mathematical Society gratefully acknowledges financial support from

The Augustinus Foundation
The Carlsberg Foundation
The Danish Ministery of Education
The Danish Natural Science Research Council
The Otto Mønsted Foundation.

The Organizing Committee
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Harald Bohr
Professor and Head of Department

By Hans Tornehave

9

This is an attempt to tell about Harald Bohr as we knew him, “we” meaning students 
and junior teachers. I was his student 1935-1940 and a junior teacher at the institute till 
after his death in 1951.

The nineteenhundred and thirties were the peak of Harald Bohr’s career. The almost 
periodic functions had made him known all over the mathematical world. The original 
papers appeared in 1924-26 and the monograph in Ergebnisse in 1932. He had been a 
professor at the Technical University since 1914, but was called to our university in 
1930. He got his new mathematical institute in 1934 at the 450lh anniversary of the 
university. It was a grant from the Carlsberg Foundation, and it was built as a new wing 
of his brother’s Institute for Theoretical Physics, which is now called the Niels Bohr 
Institute.

Before he started in his new position at the university, Harald Bohr went on a tour to 
U.S.A., where he visited Stanford University and the Institute for Advanced Study. He 
was a member of the Royal Danish Academy of Sciences and Letters from 1918, and he 
was the chairman of our Mathematical Society from 1935.

According to Harald Bohr the textbook in mathematical analysis known as “Bohr 
and Mollerup” was inspired by Jordan’s Cown z/M/za/yre, but also Hardy: A Course of Pure 
Mathematics has had some influence. Johannes Mollerup has probably been somewhat 
underestimated and most of the details in the text-book have certainly been the result of 
discussions between the authors. However, Bohr wrote very much like he talked, and 
we who knew him hear the echo of his voice when we read his book. Hence, we think 
that Bohr is responsible for the formulation, but we also know that he was extremely 
willing to accept good ideas proposed by others.

Bohr did not give elementary lectures at the university. The students attended the 
lectures for engineering students on mathematical analysis, theoretical mechanics and 
physics, while they shared the chemistry lectures with the students of medicine. The 
students had separate elementary lectures only in geometry and astronomy.

In 1933 Bohr tried just once to lecture over his textbook for the mathematics students. 
The lecture went on until the fall term in 1935. Bohr was somewhat more sedate than in 
his younger days. He had given up the habit of keeping the sponge on the floor, kicking 
it ceilingwards and catching it neatly, when he had to erase something. He had been a 
top soccer player, expert dribbler and very popular. He continued playing even as a 
professor at a time when tailcoat and tophat were standard equipment at the university. 
In the thirties it was a lot more informal, although most students wore a suit and a tie at 
the lectures.
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Bohr talked very fast and with a flat “a” reminiscent of Copenhagen dialect. He used 
the blackboard in a systematic way starting upper left and finishing lower right, writing 
in long horizontal lines. He supplied the lecture with many cross references while 
moving rapidly back and forth and underlining this and that on the blackboard in 
different colors. He did not spend much time on straightforward proofs, but where a 
trick was needed he demonstrated how the obvious method failed, and he also motiv­
ated the kind of trick to be used. He used many words in the text-book, but still more in 
his lectures.

For his advanced lectures Bohr always prepared a complete manuscript written by 
hand in a solid bound volume with ruled pages. If he had an interested assistant, he 
discussed the text with him, and suggestions from the assistant were quite often tried 
out in the manuscript and in the lecture. Nevertheless it happened quite often that Bohr 
improvised something, and his improvisations were the best parts of his lectures. He 
lectured regularly on number theory and on complex analysis, but the content of these 
lectures varied considerably. He arranged it usually so that his assistant could continue 
the lecture in a subsequent term and talk about his own particular interests.

Mathematicians of to-day would find Bohr's lectures rather old-fashioned, but one 
must remember the current state of mathematics at that time. The shift from combina­
torial to algebraic topology had just started and Hilbert space and spectral theory were 
known, but hardly in the abstract form. General topology was also known, but it had 
not a quite definite form. Measure theory had not yet become abstract, and convexity 
theory was mostly finite dimensional.

Bohr was very open for new ideas and he enjoyed the abstract points of view, but he 
did not lecture on these modern subjects although he quite often treated very modern 
subjects in brief talks, e.g. in our mathematical society. We had also lectures by Bohr's 
friends, former pupils, young assistants etc. on such modern subjects, but before I start 
on this I must tell a little about the life at the institute.

The former institute building looks small to-day, but it was really quite ample. About 
20 students per year started in the compulsory combination of mathematics, physics, 
chemistry and astronomy and about half of them specialized in mathematics. The other 
professors in mathematics were N. E. Nørlund and J. Hjelmslev, but Nørlund was also 
the director of the Geodetic I nstitute and only part time professor. He gave two lectures 
a week, sometimes on geodesy. Hjelmslev was really a genius and he contributed much 
to the understanding of the interactions of the axioms of geometry. His lectures were 
brilliant and convincing, but he did not really care about minor details, and many 
students found it hard to follow him. His assistant David Fog interpreted Hjclmslev’s 
text quite well, and he was very popular with the students. Nørlund’s assistant G. 
Rasch was well liked by the students who attended his exercises on differential equa­
tions, but he was dismissed some time in the thirties. He was son of a missionary and he 
became a preacher of statistics himself and did a lot to improve the statistical work in 
medicine and biology, and in the end he became a professor.
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Most students of mathematics specialized with Bohr. His assistant J. Pal was also the 
mathematics teacher of the chemical engineering students. He was probably the first 
jewish mathematician helped by Harald Bohr. He was Hungarian, and Bohr found him 
in Göttingen, where he seemed more or less lost. He was interested in real and complex 
analysis, topology, convexity, formal algebra and projective geometry. He did not look 
like a jew, and very few persons knew that he came from a jewish family, and he did not 
really like jews in general. He was religious, and he called himself a catholic. He had 
very strict views on morality and on teaching, and he insisted that students should learn 
only what they were able to learn well. He was very helpful to several students including 
myself, but he could be very disagreeable to some students. His exercises in connection 
with Bohr’s elementary lectures were considered a trial by most of the students.

It was unfortunate that there was too little contact between Bohr’s students and the 
students who specialized with Hjelmslev or Nørlund, but it was fortunate that Bohr was 
the center of much debate and activity. Many teachers of the technical university 
participated in seminars arranged by Bohr and they lectured occasionally at the 
university. Among them were A. F. Andersen, Richard Petersen, Johannes Mollerup 
(who died in 1937), Kaj Ränder Buch, Vilhelm Jørgensen, Svend Lauritzen. Most of all 
Børge Jessen, who stay ed with us from 1941, and Svend Bundgaard, who was with us 
much of the time. Erik Sparre Andersen, Erling Følner and some more joined us 
towards the end of the thirties. A few high school teachers were also regular guests.

There were also mathematicians whom Bohr had helped to get away from Hitler’s 
Germany. Most of them stayed in Denmark only for a short time, but Werner and Käte 
Fenchel came for good, and Otto Neugebauer was here for many years. He started our 
tradition of history of science. Olaf Schmidt and Asger Aaboe were his pupils.

The physicists had even more guests and there was fraternization between the two 
populations. Hcvcsy did chemistry and biology and talked Hungarian with Pal. Frisch 
and Meitner told us about their discoveries. The brothers Bohr talked much with each 
other, but always cpiite in private. It was very obvious that they were great friends. 
Occasionally, we also exchanged some small talk with Niels Bohr, but seldom with both 
brothers simultaneously.

An important event was the big lecture series in 1936/37 on almost periodic func­
tions. Jessen lectured and Bohr was the most eager commentator. Most of the mathe­
maticians mentioned above were in the audience and also some students. The lecture 
included the generalizations to Abelian groups and the theory of analytic almost 
periodic functions, but not the generalizations to Lebesgue-integrable functions. These 
were investigated very thoroughly shortly afterwards by Bohr and Følner in a large 
joint paper and in Følner’s thesis. Følner and Jessen collected a nearly complete 
bibliography of almost periodic functions, and it was during this work that Følner 
found Bogoliubov’s second proof of the approximation theorem.

It has been said that everybody in Hilbert’s Göttingen discussed everything with 
everybody else, while nobody in Poincaré’s Paris discussed anything with anybody else, 
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and Bohr was as much influenced by Göttingen as Nørlund by Paris. Bohr was much 
attached to Landau, and he quoted occasionally some of Landau’s deprecating remarks 
about Hilbert, but he really also admired Hilbert very much. It was probably one of the 
greatest disappointments in Bohr’s life that nobody succeeded in finding a place for 
Landau outside Germany.

Hardy was another friend of Harald Bohr and had a lot of influence on him. Hardy 
was the typical diner at high table in college, who liked the learned discussions and 
enjoyed taking a standpoint and defending it, even in matters he knew little about. He 
was the genuine English combination of the extremely refined with the quite informal, 
and he was very outspoken. Bohr has told that Hardy called his English atrocious and 
that Hardy had to teach him that it was important to say ‘’he did not come” rather than 
“he does not came”. Hardy was obviously a clever teacher, and Bohr’s English grew 
much better. His German was very efficient, but he spoke it with the flat Copenhagen 
“a”.

It is easy to understand that Bohr and Hardy fascinated each other. Both liked taking 
standpoints on everything, but Bohr did it experimentally and his standpoints were to 
be changed eventually. Hardy enjoyed defending his standpoints as a kind of sport. 
Bohr and Hardy paid visits to each other and Hardy liked the Danish landscape with 
the red cows drawing circles in the pastures.

Our mathematical society had more frequent meetings in those days; there was no 
competition with advanced colloquia. We had a good many foreign guests. It is true 
that it was not very wealthy, but even a small grant went a long way. So, we were quite 
well informed about new mathematical events. For instance we had Landau’s assistant 
Heilbronn giving a brief series of lectures on \ inogradov’s proof of the weak Goldbach 
conjecture.

Bohr understood and accepted new ideas quite readily, as e.g. the theory of distribu­
tions when he heard Laurent Schwartz lecture on them shortly after the war. In his 
teaching, however, he stuck to the classical subjects, which he knew extremely well, but 
he encouraged the junior teachers to lecture on these modern subjects. Sv. Bundgaard 
lectured in abstract algebra and on Lebesgue integration theory. Occasionally a 
teacher from the technical university gave a course. Jessen has already been mentioned, 
but also Jakob Nielsen gave a course on his own subject, surface topology.

Theoretical logic was viewed by Bohr with some suspicion, and most of the other 
mathematicians at the institute agreed with him. Kronecker’s strict point of view was 
generally respected, but Bohr and everybody else were as unwilling as Hilbert to 
abandon Cantor’s paradise, and nobody was able to manage without Zermclo’s result. 
In the teaching Landau’s Grundlagen der Analysis was more or less chosen as a basis.

As a matter of fact the professor of philosophy Jørgen Jørgensen was a preacher of 
formal logic. He read an introductory course in philosophy. It was compulsory for all 
university students, but they could choose between three very different teachers. Jørgen 
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Jørgensen experimented with polyvalent logic, and he was also once invited to give a 
special course at the institute. One student specialized in logic, and Bohr was not very 
happy about it, but the student passed with nice marks. The attitude to logic changed 
while Jessen was head of department, and Gutmann Madsen started lecturing on it.

Bohr enjoyed talking informally with us when we were engaged in idle discussion in 
the lunch room at the institute, and when we were discussing whatever it might be, he 
quite often added some very surprising remarks. He was very observant and had a keen 
sense for all kinds of absurdities in the real world, and occasionally he enjoyed talking 
nonsense. I remember once, when the news of the discovery of the rabbits’ “chewing 
pellets” first reached us, that one student stated that hares and rabbits were really 
ruminants, and, of course, he met intense opposition, but then Bohr appeared and he 
supported the student because, he said, he knew that these animals could not be 
imported in Sweden, and he thought that was because of the mouth and hoof disease, 
which attacked only ruminants. Then he went on telling that he once caught the mouth 
and hoof disease himself and it was really quite disagreeable.

Ulla Bohr has told a story from Bohr’s visit in U.S.A, shortly after the crash in 1929. 
When they first visited a private home over there, Bohr went to the bathroom and got so 
much absorbed in studying the gadgets that the company became nervous and came 
looking for him. He was interested not only in things, however, but also in people and he 
had a deep understanding of relations between people.

Quite often Bohr celebrated the end of a term of lectures by inviting the participants 
and perhaps also some of his colleagues to a dinner in his home, and afterwards he 
might read something to us, and quite often something with overtones of absurdity. He 
has read to us from Babbitt by Sinclair Lewis and from Winnie the Pooh in the Danish 
translation “Peter Plys”, and he made very similar comments on the two texts. Babbitt 
was the American who lived through the boom and the crash and who said and did just 
what everybody else said and did and understood nothing of what happened, and the 
ways of Winnie the Pooh were much the same, although his crash was less definite.

After the war Bohr became the Provost of Rcgcnsen, our closest equivalent of Trinity 
College. It is governed by three persons with mock clerical titles, the provost, the vice 
provost and the bell ringer, who is the students’ representative. The provost lived in 
Regensen, where he had an old-fashioned, but comfortable apartment, and it was an 
attractive setting for his parties.

He also owned a fine old fisherman’s cottage with leaded window-panes and a 
thatched roof. It is situated on a low cliff about half a mile south of Fynshav on the 
island Als. In those days the ferry harbour was at Mommark some 6 miles farther south 
and Fynshav was very peaceful. It was also on the edge of a very small village with a few 
farms and some small houses. Bohr invited his foreign and Danish friends to stay with 
him at Fynshav, and he found living quarters for them in the village. 1 visited him there 
a few times during the war, when he had no foreign guests, but it was charming to 
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discover that the villagers knew Landau. Hardy, W'eyl, Bochner and many other 
famous mathematicians.

We learned in Fynshav that Bohr was a nasty player of croquet and boccia, and on a 
rainy day the relatives of his mother, the Adler’s, were even more nasty players of 
parlour games like writing lists of as many famous persons as possible with their last 
name starting with E. Occasionally, the blackboard was carried outside on the gravel 
and somebody gave a lecture. Some of Jacob Nielsen’s results were presented there first. 
He had a house about half a mile northwest of Fynshav and the two families paid many 
visits to each other. Jacob Nielsen often travelling in his kayak.

Bohr’s health was not quite satisfactory. On Als we saw how he spread sesam seeds 
on his oatmeal in the mornings, and during the terms he might take a little time off for 
recreation at Aldershvile by Bagsværd Lake, and we might have to go there to discuss 
some problem with him. Nevertheless he was always quite cheerful, although he was 
nervous now' and then about the success of some effort to get somebody away from 
Germany.

We remember Harald Bohr as extremely mild mannered, but it would be very wrong 
to consider this as a symptom of weakness, and he could be incredibly stubborn when 
he fought for a cause that he felt was just. Once, when he had to judge a doctor’s thesis, 
which was barely acceptable, he did accept it. but at its defence he told the doctor in no 
uncertain terms that it was just barely acceptable, and he did it in such a way that also 
the doctor was convinced.

As told above, Bohr enjoyed many kinds of absurdities, but he really hated the 
absurdities used by the German nazis as excuses for the worst atrocities. He also felt 
that the German jews should be helped indiscriminately, since they were persecuted 
indiscriminately. This led to his disagreement with Pal, who did not like jews indiscrim­
inately, and Pål left the institute. Actually there were many jews among Pal’s best 
friends, and the real background for the break was the strict religious-moralistic point 
of view of Pål, who wanted everybody to follow the straight path regardless of the kind of 
provocations they met with.

Harald Bohr died, and the message of death reached us at the institute a dreary 
winter morning immediately before we should start a day of examinations, which went 
off rather badly. But Bohr had been the kind of leader who left a healthy institute, 
which lived on and thrived. He would have enjoyed being with us to-day.

Matematisk Institut 
Universitetsparken 5 

DK-2100 København 0 
Denmark
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Introduction to
the Almost Periodic Functions of Bohr

15

By Christian Berg

0. Introduction
The content of this paper was presented at the Centenary of Harald Bohr with the 
purpose of serving as an introduction for the many non-specialists present. It is our 
hope that this written version will incourage the reader to study the work of Harald 
Bohr. The collected mathematical works appeared in 1952, cf. [8], and at the occasion 
of the Centenary his mathematical papers with a pedagogical aim - written in Danish - 
have been published, cf. [9].

In the following we will concentrate on Bohr’s main results about almost periodic 
functions, but we shall briefly indicate how he was led to the theory and how it later 
merged into the theory of harmonic analysis on locally compact abelian groups. The 
so-called Bohr compactification of a group has become a standard concept in harmonic 
analysis.

The readers interested in a further study of almost periodic functions arc referred to 
the many monographs on the subject, e.g. Amcrio and Prouse [1 ], Besicovic [3], Bohr 
[7], Corduneanu [10], Maak [11], A complete bibliography on almost periodic func­
tions from 1923 to march 1987 has been collected, see [13].

1. Background
Harald and the two years older brother Niels were sons of the professor of physiology 
Christian Bohr, and from their youth they felt veneration for science and were acquaint­
ed with the scientists of the time. Harald began to study mathematics at the University 
of Copenhagen at the age of 17, and already in 1910 he defended his doctoral dis­
sertation ([5]) on the summability theory of Dirichlet series, that is series of the form

(1)

where (ag is a sequence of complex coefficients, and z - x+iy is a complex variable. 
Jensen had shown i 1884 that there is an abscissa of convergence yQ such that (1) is 
convergent for x > yQ, divergent for x < yo.

Bohr showed that there is a decreasing sequence yQ > y > y > of abscissas of 
summability such that (1) is Cesåro summable of order r for x > y; but not for x < y
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Furthermore, the width w = y -y of the strip y < x < y ,, where the series is 
r *r-l 'r 11 r *1^1

summable of order r but not of order r-1, satisfies

1 > > ... . (2)

Bohr could furthermore show that the inequalities (2) were characteristic for the 
sequence of summability abscissas because, for given numbers yQ > y( > ... such that 
(2) holds, he constructed a Dirichlet series having these numbers as abscissas of 
summability. The sum of the series (1) is a holomorphic function yin the halfplane x > 
y . By the Cesåro summability f has a holomorphic continuation to the half-plane

the infimum of the numbers O'for which /Tas a holomorphic extension to the half-plane 
x > oc satisfying an estimate

1/Tx+zjJ I < T+lp-|ß,
where A Ji depend on (V.

About the same time the Hungarian mathematician Marcel Riesz had examined the 
summability theory of general Dirichlet series

(3) 

n=l

where (Å ) is a sequence of real numbers. Bohr had also considered this general case, 
but in the dissertation he restricted the investigations to the special case of Å - -log n.

As a result of his investigations on dirichlet series Bohr got into fruitful collaboration 
with Landau in Göttingen about the Riemann zeta function.

For a period of several years partially overlapping with the first world war Bohr was 
engaged in writing a treatise in Danish on mathematical analysis together with 
professor Mollerup. Bohr knew the famous Cours d’Analyse of Jordan from his years of 
study and he was very much influenced by it. The mathematical analysis textbook of 
Bohr and Mollerup should get an enormous influence on the teaching of mathematics 
in Denmark, and it was used from 1915 to the 1960’ies both at the University of 
Copenhagen and at the Technical University, although in revised editions. Further 
information about the life and work of Bohr can be found in his own lecture “Looking 
backwards” and in the memorial address by B. Jessen, both published in the collected 
mathematical works [8].

2. Almost periodic functions
It was after the completion of the mathematical analysis textbook that Bohr took up the 
investigations which should eventually lead to his main accomplishment, the theory of 
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almost periodic functions. The starting point was an attempt to characterize the 
functions f(z) which admit a representation by a Dirichlet scries (3).

On a vertical line z = this leads to the representation of a function f(xf-iy) of a 
real variable y as sum of a series

21
n=l

bf^ where bn

Such series comprise Fourier series for periodic functions with period p > 0 corres­

ponding to Å = =^-n, n € Z. Bohr’s main contribution was to give an intrinsic cha­

racterization of the class of functions f: R —> C which can be uniformly approximated 
by trigonometric polynomials,

n=l
(4)

where the frequences Å( can be arbitrary real numbers, and the coefficients a„ arbitrary 
complex numbers.

He proved that the uniform closure of the trigonomtric polynomials are those 
continuous functions which are almost periodic in a sense explained below.

If/: R —» C is a function of a real variable and £ > 0, then T e R is called a translation 
number or an almost period for/corresponding to £ if

|/fx+/-/fxj| < £ for all x e R.

A subset A <= R is called relatively dense in R, if there exists a sufficiently big number 
I > 0 such that every interval of length I contains at least one number from A.

Finally a continuous function/: R —> C is called almost periodic, if for every E > 0 the 
set {t (e)} of translation numbers for/corresponding to £ is relatively dense.

In other words, a continuous function  fis almost periodic if to every E > 0 there corresponds a 
number I - 1(e) >0 such that any interval of length I contains at least one number T such that

\f(x+x)-f(x)\ < £ for all x e R.

A continuous periodic function is almost periodic since a period p is a translation 
number corresponding to any £ > 0. If/ is an almost periodic function which is 
non-periodic, and if 1(e) denotes the smallest possible length corresponding to £ > 0, 
then 1(e) will increase to infinity as £ decreases to zero. In fact if 1(e) < I for all £ > 0, 
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then the interval [I,2/] contains a sequence (tJ such that r is a translation number 

corresponding to —. Any accumulation point for the sequence (t ) is a period forf.

The first basic result in the theory is easy to prove: An almost periodic function is 
uniformly continuous and bounded.

The set. Z.Z’of almost periodic functions is stable under addition and multiplication, 
so. Z.Z5 is an algebra of functions. More generally if^,...^ : R —> C are almost periodic 
and cp : A —> C is a continuous function defined on a subset A C" such that

closure { (fi(x),...,fn(x)) |x e R} C A.

then cp(f\(x),...,fn(x)) is again almost periodic.
This is not so obvious and uses the fact that there exists for every £ > 0 a relatively 

dense set of common translation numbers for/,...,/ corresponding to E.
The principal concept for the further development of the theory is the mean value of an 

almost periodic function f. Bohr proved that the number

has a limit as Ttends to infinity, even uniformly for a f R. This limits is called the mean 
value of/and is denoted . /Z{/}.

It is easy to see that. /d is a positive linear functional on . Z./'and if/> 0,/ =# 0 then 
. /d{f} > 0. If we put

(f,g) = • ^<fg) for fg e ■

then is a scalar product, turning. ZZ’into a pre Hilbert space with the norm 11/11 = 
V(ff). The exponentials eÅ 6 R defined by e^(x) = form an orthonormal family so 
.-Zy5 is a non-separable pre Hilbert space. It is not complete.

With f e . Z.Z’Bohr associated the orthogonal expansion

(5)

where a = (fiefi = . /d{f(x)e tXx}.
Sometimes Å —is called the Bohr transform off For any finite set A of real numbers 

Bessel’s approximation theorem yields

+
kA

(6)
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showing that only countably many of the numbers a*, Å 6 R are different from zero. 
Therefore, the orthogonal expansion (5) has only countably many non-zero terms; it is 
called the (almost periodic) Fourier series oj/The set S — {AeR|a #0} is called the spectrum 
off, and the numbers A 6 5' are called the frequences off

It is furthermore easy to see that the Fourier series of a periodic function/ coincides 
with the almost periodic Fourier series off

The theory developed so far is quite elementary. The importance of the theory was 
underlined by the following fundamental results, the proofs of which given by Bohr 
were long and difficult.

The theorems are:

(A) The uniqueness theorem.
If fg € .rF-/' have the same Fourier series then f = g. Equivalently R w ö maximal 
orthonormal system in . -/.SI

(B) Parseval’sformula.

IMI2l«Al2 forany

(C) The approximation theorem.
For f € . and £ > 0 there exists a trigonometric polynomial p of the form (4) such that
\f(x)—p(x)\ < £ for all x € R.

The theory outlined so far appeared in two long papers in Acta Mathematica from 
1924 and 1925, see [6],I,II, comprising more than 200 pages. The results had been 
announced in two notes in Comptes Rcndus de l’Academie des Sciences, Paris 1923, see 
[8].

The first Acta paper contains the proof of Theorem B, and Theorem A is an easy 
consequence of Theorem B. In the proof of Theorem B Bohr considered for T> 0 the 
piecewise continuous function /which is equal to f on [0, T[ and periodic with period 
T. By Parseval’s formula for periodic functions one has

J
 oo

l/wi2<fe= JXT
O n=-°°

where
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Via a very delicate analysis Bohr obtained the result by letting Tæ. In the second 
Acta paper Bohr proved the approximation theorem using periodic functions of infi­
nitely many variables.

In 1927 Bochner gave the following very important characterization of almost 
periodic functions, cf. [4]:

A function f: R —> C is almost periodic if and only if it is continuous and the set of translates 
{f(x+a) \a e R} has compact closure in the uniform metric.

The importance of this result lies in the fact that the compactness characterization 
can be used as starting point for the more general theory of almost periodic functions on 
groups as developed by von Neumann in 1934. From Bochner’s result it is also obvious 
that the sum and product of almost periodic functions are again almost periodic.

Alternative proofs of the three fundamental theorems A, B, C were given shortly after 
Bohr’s work by many different mathematicians e.g. Bochner, de la Vallee Poussin, 
Weyl and Wiener. This demonstrates the enormous interest the theory raised.

In a third major paper in Acta Mathematica from 1926 ([6],III) Bohr studied 
analytic almost periodic functions and their corresponding Dirichlet series.

For the definition of this concept it is useful to introduce the notion of an equi-almost 
periodic family of continuous functions f: R —> C, thereby meaning that the set of 
common translation numbers for the functions in ./'corresponding to £ > 0 is relatively 
dense, i.e.

is relatively dense for any E > 0.

An analytic function/in a vertical strip a < x < ß in the complex plane is called 
almost periodic in the strip if the family ./= {f(x+iy) |x 6 ]<*,/?[} is equi-almost periodic 
as functions of y 6 R. It turns out that the functions in .7 have the same frequences (kf 
and that the Fourier coefficients

an (x) = . // {flx+iyje^}

have the form for a constant a 7 0, showing that the Fourier expansion has the 
form

f(x+iy)

called the Dirichlet expansion off
We shall not go further into the analytic almost periodic functions, which in a sense 

was the goal of Bohr’s investigations.
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3. The Bohr compactification
Let us consider the theory from another point of view.

The continuous group characters of the real line, i.e. the continuous homomor­
phisms of (R,+) into (T, •), where

T={^eC| H = l},

are precisely the functions (^)AcR- The coarsest topology on R for which these functions 
e Å € R are continuous, is strictly coarser than the ordinary topology. We propose to 
call it the Bohr topology. With the Bohr topology the real line is organized as a topological 
group, and a basis for the neighbourhoods of zero is given by the following sets

= {reR| |?Å|T-1| < <V.,|Ar-l|< <5},

where m e N, 6 R and <5 > 0 are arbitrary.
The real line with the Bohr topology is not compact, not even locally compact, but it 

can be compactified. Let T be a copy of the circle group for each Å cR and let

be defined by
j(x) =

The product set is a compact group under the product topology. The mappings is 
clearly a homeomorphism of R with the Bohr topology onto the image JfR/ The 
closure of jßR.) is a compactification of R with the Bohr topology, called the Bohr 
compactification of R and denoted ßfRJ, i.e.

ß(R) =j(R),

which is a compact group. In the sequel we identify R andjfR/
By the approximation theorem an almost periodic function f: R —> C is uniformly 

continuous in the Bohr topology, and therefore it has a unique continuous extension F 
to the Bohr compactification. Conversely, ifF: ßCR) —* C is a continuous function on 
the compact group /3fRj, then it is uniformly continuous, and so is the restriction f of F 
to the real line with the Bohr topology. This means that for any £ > 0 there exists a 
neighbourhood of zero of the form [A,...,A ;d] such that

LÆ*+^~/Wl - £ for aI1 T 6
but this set is an ordinary neighbourhood of zero and relatively dense as is easily seen, 
so/is actually almost periodic.
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This shows that there is a one-to-one correspondence between the almost periodic 
functions of Bohr and the continuous functions on the Bohr compactification /3(R).

The Bohr compactification /3(R) can be described as the set of all characters of R, i.e. 
the set of all homomorphisms cp: R —> T. In fact, since ß(R) is the closure of the set of 
continuous characters, /3(R) consists of characters, and the fact that all characters 
belong to ßlR) is an easy consequence of Kroneckers’s theorem.

4. Harmonic analysis on locally compact abelian groups
Bohr’s theory of almost periodic functions has many resemblances with those of Fourier 
series and Fourier integrals. During the 1930’ies these three theories merged into a 
common theory called harmonic analysis on locally compact abelian groups. Many 
mathematicians contributed to this achievement e.g. Bochner, van Kampen, Pontrya­
gin, Weil. The starting point was the theorem of Haar about the existence of an 
invariant measure on a locally compact group, now called Haar measure. With the 
publication in 1940 of Weil’s fundamental monograph [12] the theory became widely 
known although many simplifications and refinements have appeared since then.

To every locally compact abelian group G is associated a dual group ö. As a set 
ö concists of the continuous characters of G, i.e. the continuous homomorphisms y: 
G —> T. With pointwise multiplication and the topology of uniform convergence on 
compact subsets of G it turns out that ö is a locally compact abelian group. It is 
customary to write (x,y) in place of y(x) for x e G, y 6 ö.

For a continuous function f: G —>■ C with compact support the Fourier transform 
/■ (2 —* C is defined by

J(x) (x,y) dmG(x) for y 6 Ö,

and it is possible to choose the Haar measures mG and on G and G in such a way that 

(7)

for all such f This formula shows that the Fourier transformation f —> /has a unique 
extension to an isometry of L2 (G) onto L2 (ö).

For G = T we have 6' ~ Z andf(n) is the n’th Fourier coefficient, while (7) is Parseval’s 
formula.

For G = R we have (5 ~ R, /is the ordinary Fourier transform and (7) is Planchercl’s 
theorem.
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For G = ß(R) and an almost periodic function f: R —-> C with unique continuous 
extension F: ß(R) -> C to the Bohr compactification ß(H), it turns out that

i.e. the mean value of/is the Haar integral of the extension F. The dual group of ßfR) 
can be identified with R with the discrete topology, and = a., the Å’th Fourier 
coefficient, while (7) is Parseval’s formula, cf.(B) in §2.

Pontryagin’s duality theorem states that the dual group of ö can be identified with G, 
i.e. Cs ~ G.

Furthermore, for any locally compact abelian group G there is a Bohr compactifica­
tion ß(G), which can be realized as the compact dual group of G considered as a discrete 
group. Again there is a one-to-one correspondence between continuous almost periodic 
functions on G and continuous functions on ß(G). The term Bohr compactification 
seems to have been introduced by Anzai and Kakutani in two papers from 1943, cf. [2].

5. Conclusion
We shall not attempt to describe the many generalizations and applications of the 
theory of almost periodic functions. The literature is enormous, cf. [13], and it would be 
an overwhelming task.

The other papers in this volume will shed some light on the various aspects of the 
subject and thereby show the richness and beauty of the theory initiated by Harald 
Bohr.
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Almost-Periodic Functions in Banach Spaces

By Luigi Amerio

1. Definition of almost-periodic function. Elementary properties
The general theory of almost-periodic (a.p.) functions with complex values, created by 
Harald Bohr in his two classical papers published in Acta Mathematica in 1925 and 
1926 [1], has been greatly developed by Weil, De La \7allee-Poussin, Bochner, Stepa­
nov, Wiener, Bogoliubov, Levitan.

Fundamental results, in the theory of a.p. linear ordinary differential equations, are 
expressed by the theorems of Bohr-Neugebauer and of Favard [2].

Bohr’s theory was then, in a particular case, extended by Muckenhaupt [3] and, 
subsequently, by Bochner [4] and by Bochner and von Neumann [5] to very general 
abstract spaces.

The extension to Banach spaces has, in particular, revealed itself of great interest, in 
view of the fundamental importance of these spaces in theory and applications.

Let Abe a Banach space; ifxeA, we shall indicate by ||x||, or by ||x|| , the correspond­
ing norm.

Let / be the interval -oo</< + oo and

x=f(t) (1.1)

a continuous function (in the strong sense), defined on J and with values in X.
When t varies in J the point x=f(t) describes, in the X space, a set which is called the 

range of the function f(t), indicated by Ä .
A set A’C J is said to be relatively dense (r.d.) if there exists a number />0 (inclusion 

length) such that every interval [a, a + I] contains at least one point of E.
We shall now say that the function f(t) is almost-periodic (a.p.) if to every E>0 there 

corresponds an r.d. set {r)f such that

Sup||/(7 + t)-f(t) II <e Krf{r}f. (1-2)

Each re{r}£ is called an £-almostperiod off(t); to the set {r}f therefore corresponds an 
inclusion length I and it is clear that, when E—>0, the set {r}£ becomes rarified, while (in 
general) l—->+°o.

The above definition was given by Bochner and is an obvious extension of the 
definition adopted by Bohr for his theory of a.p. functions. 11 is, undoubtedly, in itself a 
very significant definition: its real depth can actually be understood only “a posteriori”, 
from the beauty of the theory constructed on it and the importance of its applications.

The theory of a.p. functions with values in a Banach space is, in the way it is treated 
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by Bochner, similar to Bohr’s theory of numerical a.p. functions: new developments 
arise, as is natural, in connection with questions on compactness and boundedness. 
These questions (which have been particularly studied in Italy) arc of notable interest 
in the integration of a.p. functions and, more generally, in the integration of abstract 
a.p. partial differential equations [6].

Let us now recall the first properties of a.p. functions, which can be easily deduced 
from their definition.

We add that when we say that f(t) is uniformly continuous, or bounded, or that the 
sequence {f(t)} converges uniformly etc., we always mean that this occurs on the 
whole interval J.

I f(t) a.p. ^f(t) uniformly continuous (u.c.).

II f(t) a.p. relatively compact (r.c.) (that is the closure 7? is compact).

HI fn(t) a.p. (n = \,2,..fofn(t) -+f(t) uniformly => f(t) a.p.

IV f(t) a.p.,f'(t) uniformly continuous =^>f' (t) a.p.

V x =f(t) X-a.p.,y = g(x) with values in Y (Banach) and continuous on R Y-a.p.

In particular:

f(t) a.p., k>0 =^>|[/7/j||Ä a.p.

2. Bochner’s criterion
The class of a.p. functions has been characterized by Bochner by means of a compact­
ness criterion, which plays an essential role in the theory and in applications. The 
starting point consists in considering, together with a given function f(t), the set of its 
translates {f(t + 5J} and its closure {f(t + y)} with respect to uniform convergence. 
We have then:

VI Let f(t) be continuous, from J lo X. A necessary and sufficient condition for f(t) to be a.p. is 
that from every sequence {5 } it may be possible to extract a subsequence {I } such that the sequence 
{f(l + ln)} be uniformly convergent.

A very important consequence of Bochner’s criterion is that the sum J(t) + g(t) of two 
X - a.p. functions is X - a.p.; the product cp(t)f(t) of fol), X - a.p., by a numerical a.p. function 
cp(t), is a.p. 11 follows, in particular, the almost-periodicity of all trigonometric polynomials:
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P(t) = S af'1' (ayX,ÅyJ).

Observation. Let x = f(t) eLp (J;X), with \<p < + '&■. assume in other words, that 
+ n)\\pdr]< + ^ VteJ, "where A = [0,1].

The function f(t) is said to be a.p. in the sense of Stepanov if to every e> 0 there corresponds an 
r.d. set {r}f such that

{\\\f(t+r+r])-f(t+rf\pdr]} Fre/r} (1.3)

As has been observed by Bochner, the almost-periodicity in the sense of Stepanov can be reduced 
to that in the sense of Bohr for vector valued functions). Consider, in fact, the Banach space 
Lp (A; X) and define, VteJ, the vectorf(t) = {f(t + r])}eLp (A: X). We have then

{JjLW+*+^-fJ+W^dr]}^ = \\f(t+T)-f(t)\\Lr(A:X)

and the thesis follows from (1.3).

3. Harmonic analysis of almost-periodic functions
The harmonic analysis of a.p. functions extends to these the theory of Fourier expan­
sions of periodic functions. The following statements hold:

VII (approximation theorem). Iff(t) is a.p. there exists, Ve>0, a trigonometric polynomial P (t) 
such that

Sup ll/W - P (l) II « e.
J

VIII (theorem of the mean). Iff(t) is a.p. there exists the mean value

M = \im fSTf(l)dl
T-**> ^lj-T

It follows that the function of A

a(Xfi =

is defined on J; af;f) takes its values in X, as does f(t): we shall call this function the 
Bohr transform of the a.p. function///).
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It can be seen, by VII, that a(k; f) = 0 on the whole ofJ, with the exclusion, at most, of a 
sequence (Å }.

The values Å for which a» = a(ky f) # 0 are called the characteristic exponents off(t). 
The vectors c arc the Fourier coefficients off(t), to which we can associate the Fourier series 

x>

f(t) ~ f e'^1.
I n n

IX (uniqueness theorem)

f(t) andg(t) X-a.p., a(X; f) = a(X; g) =£> f(t) = g(t).

The correspondence between almost-periodic functions and their Bohr transforms is therefore 
one-to-one. A property of the transform a(Å; f) is given by the following proposition:

X afZ; f) = Q =>lim a (Å ; f) = 0, that is the Bohr transform is continuous at all points in 

which it vanishes. Furthermore:

lim a(X,f) = 0 , lim a = 0,
X—>oc «—»=0 "

and, for Hilbert spaces:

00

^(llywll2) = 2 ||a II2 (Parseval’s equality).
I «

We recall moreover that Bochner’s approximation polynomial can be constructed also in the 
abstract case.

4. Weakly almost-periodic functions
Given the Banach space X, we shall call A'* its dual space (a Banach space too) 
constituted by the linear functionals continuous on X. If xeX, x*eA* we shall indicate 
by <x* x> the complex value that, through the functional x* corresponds to x, and by 
||x*|| the norm of x*.

We shall say that f(t), with values in X, is weakly almost periodic (w.a.p.) if, Vx*cX*, the 
numerical function 

is a.p. [7J.
<x*,f(t)>
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As may be seen, the definition given here has, with respect to that of an a.p. function, 
the same relation as the definition of weakly continuous function has with respect to 
that of continuous function.

Its interest is particularly connected with statement XIV below. A different defini­
tion of weak almost periodicity is due to Eberlein [8]: the w.a.p. functions in the sense of 
Eberlein possess notable properties, particularly in relation to ergodic theorems.

It is clear (as <x* x> < ||x*|| ||x||) thatf(t) a.p. =>f(t) w.a.p. In order to indicate that 
{xj is a sequence converging weakly to x(i.e. <x* x x>, Vx*eX*) we shall make
use of all the following notations:

x -**x, or lim* x = x, n n—>oo n

and x is called the weak limit (which, if it exists, is also unique) of the sequence {x }. Let 
us remember that, in an arbitrary Banach space, a sequence {x } can be scalarly 
convergent (i.e. lim <x* x> exists and is finite Kx*c¥*) without necessarily being weakly 
convergent, that is without there being an x which is its weak limit. If this circumstance 
is not present (i.e. if scalar convergence implies weak convergence) the space X is said to 
be semicomplete (reflexive, and, in particular, Hilbert spaces are semicomplete).

Let us now indicate some properties of w.a.p. functions.

XI f(t) w.a.p. ^>R bounded and separable.

When necessary, we can therefore assume that X is separable.

XII fn(t) w.a.p. (n = 1, 2,...),fn(t) -^f(t) uniformly =5>f(t) w.a.p. (fft) -^f(t) uniformly
means that, Kx*eAz* <x*,f (t)> <x*,f(t)> uniformly).

XIII Let Xbe semicomplete andf(t) weakly continuous. Then f(t) w.a.p. <=> there exists a 
subsequence {s'} such that {f(t + s'f} is uniformly weakly convergent.

This proposition extends Bochner’s criterion to w.a.p. functions (though with a re­
strictive hypothesis on the nature of the space X).

As we have already observed, f(t) a.p. => f(t) w.a.p. It is important to note that the 
property that has to be added to weak almost-periodicity to obtain almost-periodicity is 
one of compactness. The following theorem can, in fact, be proved.

XIV f(t) w.a.p. and Rf r.c. =5>f(t) a.p.
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5. Integration of almost-periodic functions
\Xf (t) is an a.p. function with values in a Banach space ,V, we will write, in what follows,

F(l) =\f(U) dr]- (5.1)

The problem of the integration of a.p. functions in Banach spaces is of notable interest, 
also because it serves, so to say, as a model for classifying Banach spaces in relation to the 
theory of abstract a.p. equations.

If X is Euclidean, then Bohr’s theorem holds: F(t) bounded => F(t) a.p.
For the general case (X arbitrary Banach space), the almost-periodicity of F(t) has been proved by 

Bochner under the hypothesis that Rp is r.c.
This condition is obviously much more restrictive than that of boundedness; it can 

not however be substituted in the general case by the latter, as can be shown in the 
following example (Amerio, [9]).

Consider, in fact, the space lx of bounded sequences of complex numbers: x = {§}, 
with ||x|| = Sup The function f(t) — {n 1 cos(t/n)} is a.p. and has the integral F(t) = 
{sin(t/n)}, which is bounded (||/'Y<)|I < 1) and weakly a.p. (see a) below), but not a.p.

One can prove nevertheless [9] that Bohr’s enunciation remains unaltered if the space X is 
uniformly convex (it holds therefore in Hilbert spaces, in f and L?, with 1< /;< + æ).

Let us prove now the following theorems.

XV (Bochner) Az arbitrary, f(t) a.p., R r.c. => F(t) a.p.
XVI (Amerio) X uniformly convex, f(t) a.p., F(t) bounded => F(t) a.p.

a) Proof of the theorem XV. As R is r.c., F (t) is bounded:

Sup||F^|| = M< + oo. (5.2)

Furthermore, Vx*eX*,

|<x*, F(t)>\ = |<x* drj>\ = I Jo<x*m.

As <x* f(t)> is a.p., from Bohr’s theorem it follows that <x* F(t)> is a.p.; F(t) is 
therefore w.a.p.

Rp has been supposed r.c.; our thesis follows then from theorem XIV.
b) Proof of theorem XVI. We have already proved in a) (utilizing only the bounded­

ness of F(t)) that F(t) is w.a.p. It is therefore sufficient, making use of the properties of 
uniformly convex spaces, to prove that Rp is r.c.

We first of all remember that a space X is called a uniformly convex (or Clarkson) 
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space if in the interval 0<(J<2 there exists a function co(ø), with Q<æ(o)< 1, such 
that

||x||, IIjII 1 and ||x—y|| $= o => || || \-w(o). (5.3)

Now we observe that from (5.3) it follows for any x and y:

||x-y|| 2* (J max { ||x||, ||jy||} => || || «S (\~co(ø)) max {||x||, ||j||}. (5.4)

Let us assume that the range Rp is not r.c. There exist then a constant d>0 and a 
sequence {s^} such that

(5.5)

We can suppose that {s } is regular with respect to f(t) and F(t), that is

lim/fZ+5) = f (t), lim* F(t+s) = F (t) (5.6)
«—>o° •> M—>00 ” ■S'

uniformly. The last relation follows from Bochner’s criterion (theorem XIII), noting 
that the space X is semicomplete (being reflexive).

It also holds that

F(t + = F(s.) + + sj dr]

and, consequently, for j =£k,

IlFfz+y - F(l+sk)\\ > - F

If we fix tej, we will have, by (5.5) and the former part of (5.6),

||F(2+5.J - F(t+sk) II 2* — for j > k n.

Therefore, by (5.2),

IlFff+jJ - F(t+sk) (I ^^77 max II, II

and, by (5.4),

yll F(t+s.) + F(l+sk)II « n - a>(^)) max {||Ff(+y||, ||F(/+^||) =S
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From the latter part of (5.6) it then follows

IIF WH C (1 - (0(A)) M

and, consequently,

(5.7)

Relation (5.7) is absurd; from the latter part of (5.6) follows in fact, the weak conver­
gence being uniform,

lim* F (t-s ) = F(t)n—>sc 5' n7

and therefore

IlFWll « lim_inf||F//-s> || S d-<o(A)) V,

which contradicts (5.2).
It is ofinterest to note that the previously given example is, in a certain sense, the only 

possible. Both functions/(7) and F(t) belong in fact to the subspace cQ of Z°°, of numerical 
sequences which converge to 0. The analysis of Banach spaces A which do not contain c 
is due to Pelczynski [10], and the important role of these spaces in the problem of 
integration was indicated by Kadets [11]. The following theorem in fact holds:

XVII (Kadets) Assume f(t) a.p., F(t) bounded. Then F(t) is a.p. if and only if the space X 
does not contain cQ.

Observation. As we have observed in §1, the above considerations are essential in the 
study of some typical equations, linear or non linear, of mathematical and theoretical 
physics; in particular [12]: the wave equation, Schrodinger’s equation with time­
dependent operator, and, in the non linear field, the wave equation with non linear 
dissipative term and the Navier-Stokes equation (assuming, in all cases, the presence of 
an a.p. forcing term f(t), and setting the problems in Hilbert or uniformly convex 
spaces).



MfM 42:3 33

References

[1] Bohr, FL: Zur Theorie der fastperiodischen Funktionen, Acta Math. 45, 46, 1925.
[2] Favard,J.: Leqons sur les fonetions presque-périodiques, Gauthier-Villars, Paris, 1933.
[3] Muckenhaupt, C. F: Almost-periodic functions and vibrating systems, J. Math. Phys. 8, 1929.
[4] Bochner, S.: Abstrakte fastperiodische Funktionen, Acta Math. 61, 1933.
[5] Bochner, S. and von Neumann, J.: Almost-periodic functions on groups, II, Trans. Amer. Math. Soc. 37, 

1935.
[6] Cfr. Amerio, L.: Abstract almost-periodic functions and functional equations, Boll. UMI., 20, 1965, p. 

287-384, and the books: L. Amerio - G. Prouse, Almost-periodic functions and functional equations, Van 
Nostrand Reinhold C., 1971; B. M. Levitan - V. V. Zhikov, Almost-periodic Junctions and differential 
equations, Cambridge Univ. Press, 1982.

[7] Amerio, L.: Funzioni debolmente quasi-periodiche, Rend. Sem. Mat. Padova, 30, 1960. For the harmonic 
analysis ofw.a.p. functions cfr. [6]; er. also H. Gunzler, On the countability of the spectrum of weakly 
almost-periodic functions, Rend. Sem. Mat. e Fis. Milano, 52, 1982.

[8] Eberlein, W. E.: Abstract ergodic theorems and weakly almost-periodic functions, Trans. Amer. Math. 
Soc. 67, 1949.

[9] Amerio, L.: Sull’integrazione dellefunzioni quasi-periodiche astratte, Ann. di Mat., 53, 1961.
[10] Pelzcynski, A.: On B-spaces containing subspaces isomorphic to the space c , Bull. Acad. Polon. Sei., 5, 

1957.
[11] Kadets, M. I.: The integration of almost-periodic functions in a Banach space, Funct. Analysis and its 

Appl. 3, 1969.
[12] Cfr. the second part of Amerio-Prouse [6]; cfr. also M. Biroli, Sur les solutions bornées et presque 

périodiques des équations et inequations devolution, Ann. di Mat., 93, 1972; M. Biroli - A. Haraux, 
Asymptotic behaviour for an almost-periodic strongly dissipative wave equation, Joum. of Diff. Eqs., 
38, 1980; P. Marcati - A. Valli, Almost-periodic solutions to the Navier-Stokes equations for compres­
sible fluids, Boll. UMI, 4-B, 1985.

Politecnico di Milano
Dipartimento di Matematica
20133 Milano, Piazza Leonardo da Vinci 32 
Italy





MfM 42:3 35

Almost Periodicity in Solid State Physics and 
C* Algebras

By Jean Bellissard

I. Almost Periodic Physics:
Several physical phenomena involve almost or quasi periodic functions. The earliest 
examples concerned applications in Classical Mechanics. More recently almost peri­
odicity has been important in Quantum Mechanics especially in problems involving 
conductors. Most of the corresponding examples concern Schrödinger operators with 
quasi or almost periodic potential or some tight binding approximation of it. The aim 
of this section is to provide physical examples taken from Solid State Physics.

1-1. Quasi ID conductors:
In 1964 Little [Little], in a remarked article suggested that superconductivity could be 
enhanced in organic conductors. More generally, molecular conductors represent a 
favourable case for such a mechanism because they may contain easily 20 to 40 time 
more atoms than a metal in a unit cell and the intermolecular vibrations permit an 
increase of the interactions between Cooper pairs. These remarks led the community to 
search for conducting organic crystals. In the early seventies the salts of TTF (tetra­
thiofulvalene) were produced in particular the TTF-TCNQ. The corresponding mole­
cules are planar and are vertically linked together through hydrogen bridges leading to 
a very strong anisotropy and also to the existence of a conduction band in the vertical 
direction. It was soon realized however that most of them even though quite good 
conductors at room temperature, became insulator at low temperature preventing a 
superconductor transition to occur. In 1979Jerome, Bechgaard et al. [Schultz] found a 
new family of molecules, similar to the TTF salt, the so called TMTSF salts (tetrame- 
thyl-tetraselena-fulvalene) providing a superconductor transition at low temperature. 
Our aim here is not to consider the superconductor transition but rather to provide an 
explanation for the existence of a metal-insulator transition in the early examples.

In describing the metallic properties of such a chain, one usually ignores the electron 
interaction, and the only collective constraints comes from Pauli’s principle leading to 
the Fermi-Dirac distribution at thermal equilibrium. It is then sufficient to investigate 
the one electron Hamiltonian. In our problem since the conductivity is essentially one 
dimensional, it will be sufficient to represent it as a ID Schrödinger operator. Thanks to 
the periodic arrangement of the molecules, the effective potential V seen by a typical 
conduction electron will be a spatially periodic function of a period “a” determined by 
the chemical forces. The Bloch theory, the Solid State analog of Floquet’s theory, 
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predicts that the energy spectrum is obtained by searching eigenfunctions satisfying 
Bloch’s boundary conditions namely, in suitable units:

r r / -> i{ ~ + V(*)} Vk(x) = E(k) rpk(x) ^pk(x+a) = e'ka ipk(x) (1)

The electron gas will then occupy all energy levels below the chemical potential which 
usually coincides at low temperature with the Fermi energy level Ef. However in these 
systems, because the chemical bonds are not as strong as in metals, the electron gas has 
another possibility to decrease its overall energy, namely by creating a gap at the energy 
level (fig. 1). This is called the “Peierls instability” [Peierls (55)]. It is obtained through

Fig. 1:1) left: in absence of spatial modulation of the charge density the electron gas occupies the states with 
energy below the Fermi level.

2) right: if the charge density modulated itself spontaneously, a gap opens at the Fermi level, decreasing the 
overall energy of the electron gas. This modulation of the COW is therefore stable (Peierls instability).

a modulation of the electron gas at a spatial frequency =2^/^ where kF is the quasi 
momentum such that E(k ) = Actually the modulation usually affects the “charge 
density wave” (CDW), namely the charge distribution in the electron gas along the 
chain. This effect creates an additional contribution to the effective potential with a 
spatial period a^.. Since in general ap is not commensurate to a the effective potential seen by the 
conduction electrons is quasi periodic. Aubry [Aubry 78] proposed, to describe this phenom­
enon, the following tight binding model, called the Almost Mathieu equation:

(p(n+\) + cf)(n-\) + 2/.icos2 st (x-an) cp(n) = E <p(n) (2)

In this equation, it represents the strength of the interaction, a=a la is the frequency 
ratio, and x is a random phase representing the arbitrariness of the origin in the crystal 
(phason modes). We will see later on in this review that indeed if the extra modulation is 
strong enough, the corresponding quasi periodic Schödinger operator has a pure point 



MfM 42:3 37

spectrum at low energy leading to exponentially localized states and zero conductivity. 
It is therefore not surprising to find in general a metal insulator transition at low 
temperature for these systems. What makes the difference between various molecules is 
the strength of the Peierls instability. In the TMTSF salts, it seems to be weak enough 
to avoid the insulator state, and therefore to permit at low temperature the creation of 
Cooper pairs leading to superconductivity.

1-2. 2D Bloch electrons in a uniform magnetic field:
The second example of a system described by a quasi periodic potential concerns an 
electron gas in a two dimensional perfect crystal submitted to a uniform perpendicular 
magnetic field. This problem has been one of the most challenging encountered by 
Solid State Physicists. The first proposal to treat it goes back to the thirties with the 
works of Landau [Landau (30)] and Peierls [Peierls (33)], who gave the lowest order 
approximation of the effective hamiltonian at respectively high and low magnetic field. 
The question of finding an accurate effective hamiltonian occupied most of the experts 
during the fifties (see [Bellissard (88a)] for a short review of that question). The main 
reason comes from the usefullness of the magnetic field in providing efficient experi­
mental tools for measuring microscopic properties of metals. The Hall effect, the de 
Haas-van Alfvcn oscillations, the magnetoresistance, for example provide precise 
information on the charge carriers, the shape of the Fermi surface, the band spectrum, 
etc. During the sixties and the seventies, many improvements were obtained on the 
nature of the corresponding energy spectrum. In particular D. R. Hofstadter computed 
the spectrum of the so called Harper model as a function of the magnetic flux through a 
unit cell, end exhibited an amazing fractal structure (see fig. 2) which is still now under

Fig. 2: 1) left: the Hofstadter spectrum as a function of the parameter a.
2) right: measurement of the transition curve between normal and superconduction phase in the (T.B) 

plane for a square network of filamentary superconductors (taken from [Pannetier (84)]).
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study, even though recent results permit to say a lot on it (see [Bellissard (88b)] for a 
review).

In order to give an idea of how quasi periodicity enters in this game let us consider a 
rather simple example. Let us assume that an electron be described in a tight binding 
approximation, by a wave function ip on a 2D square lattice Z2.In absence of magnetic 
field, the energy operator may be effectively described, as a first approximation, by 
means of nearest neighbours interaction, namely by

//y> (m,n) = tp(m +1,n) + xp(m—\,n) + xp(m,n+\) + ip(m,n —1/ (3a)

Adding a uniform magnetic field will result in adding a U(l) gauge field, namely in 
changing the phase of each therm in (2):

H(B) Ip (m,n) = ^inAffm.n) + e

+ (3b)

where A ('m, nJ represents the product of elh (h being the Planck constant) by the line 
integral of the vector potential between the point (m,n) of the lattice and the point 
(m+\,n) for /1=1, or (m, n+lj if/1=2. In particular, because the magnetic field is uniform, 
one must have:

A(m,n) + Äfm+l,«,) - Af(m,n+lJ - A2(m,n) = (4)

where 0O = h/e is the quantum of flux and (p the flux through the unit cell. One solution 
of the previous equation (4) is the “Landau gauge” namely:

A^(m,n) = Q A2(m,n) = ocm (5)

In this case, the operator H(B) commutes with space translations along the «-direction. 
Therefore the solutions of the stationary Schrödinger equation will have the form:

H(B)ip=Eip with ip(m,n) = e 2,JTkn (p(n) (6)

leading to Harper’s equation:

(p(n+\) + (p(n-\) + 2cos2.7T(T-a7?>) (p(n) = E (p(n) (7)

Thanks to eq. (4) “a” is a physical parameter liable to vary, and will be therefore 
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irrational most of the time. The Harper equation appears as a discrete version of a ID 
Schrödinger operator with a quasi periodic potential.

If the crystal is not a square lattice but a rectangular one, leading to anisotropy 
between the two components, the same argument leads to the Almost Mathieu equa­
tion:

(p(n+\) + (p(n-\) + 2/zcos2jr(T-m/J <p(n) = E (p(n) (7)

where /U represents the anisotropy ratio of the coupling constants in the vertical versus 
the horizontal directions. This equation also represents the effective hamiltonian for a 
tight binding representation of the effect of a Charge Density Wave in a ID conductor 
provided /U represents the strength of the Peierls instability (see eq. (2)).

It is important to remark that (3b), (6) or (7) can be w'ritten in an algebraic way by 
introducing the following two unitaries U and V:

U tp (m,n) = ip(m-1,n) V (m,n) = e~2inAi(m'n~x> ip (m,n-\) (8)

They satisfy the following commutation relation:

/7J/=^J/Z7 (9)

The Almost Mathieu hamiltonian can be written as:

/7= Z7+£/*+T*| (10)

and in general it is possible to show (see §III.l) that the band hamiltonian for a 2D 
Bloch electron in a uniform magnetic field belongs to the C*Algebra generated by U 
and V.

1-3. Superconductor networks:
In the Landau-Ginzburg approach [Landau (50)] of the superconductivity, the state of 
the electron gas is represented by a unique coherent wave function ^(x). It plays the 
role of an order parameter like the magnetization in magnetic systems. The square 
I lE(x)\‘2 of this wave function will represent phenomenologically the probability density 
of Cooper pairs in a sort of Hartree approximation. Landau and Ginzburg postulated 
that the corresponding free energy is given by:

F = P* {1 '2^ " v(x) I2 + I ’f'Wl2 +1 T'WI4 + (II) 
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where E is the volume occupied by the superconductor, e the charge of the electron, e) 
the gradient operator, A the vector potential, H the effective magnetic field in the bulk, 
and a,ß arc temperature dependent phenomenological parameters. To insure the 
stability of the system, we must have ß> 0. The actual state of the system is provided bv 
functions minimizing the free energy. Since at temperature bigger than the critical 
temperature there is no Cooper pairs, one must assume that the minimum is reached for 
^=0. 1'his implies in turn that a is positive for T > T. If T < T. we must have a non 
zero solution, and therefore a <0. Assuming a smooth dependence in the temperature, 
we get:

am «fT-ß (T) ~ßc at T~T (12)

In a large superconductor, the magnetic field does not penetrate in the bulk (Meissner 
effect), unless under the form of quantized flux tubes [Mermin], The penetration 
length £ (T) can be computed in terms of the parameters aand ß and is of order of about 
lOOOA at small Ts. This can be seen by computing the minimizing solution of (11) for a 
half space for instance [ Landau (50),Jones]. Near the critical temperature however the 
penetration length diverges like £(T) ~ £ fl-777N_l/2. and •Fmust be very small, in 
such a way that the quartic term in (11) may be neglected. Therefore whenever the 
external magnetic field is uniform, for superconductors of small size, the minimizing 
solution of (11) is such that H ~ const, in the bulk and l/7 satisfies the linearized 
equation:

{ 2eA(%) }2 W(n) = £Wx,i E=(^)t(T-T) (13)

with some proper boundary condition. To get the minimum of the free energy, Emusl be 
the groundstate of (13).

These remarks were the basic elements for the study of filamentary superconductors 
as initiated by DeGennes [deGenncs (81)] and Alexander [Alexander], in the study of 
random mixtures of superconductors and normal metals. The solution of (13) for a thin 
filament of finite length can be obtained through the one dimensional analog of (13) and 
a gauge transformation. It is therefore sufficient to know the wave function at the 
filament ends to know' the solution everywhere. The compatibility conditions (current 
conservation) at the filaments edges give rise to a sort of tight binding representation of 
the linearized Landau-Ginzburg equation (13). For regular lattices of filamentary 
superconductors these equations have been written by Alexander, Rammal, Lubensky 
and Toulouse [Rammal (83)]. For a square lattice of infinitely thin filaments of length 

one gets:
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H(B) i/> = £ lp £ = 2 cos(a.(E)i/2) = 2 cos (a/^(T)) (14)

where lp represents the sequence of values of W at the vertices of the lattice, H (B) is the 
operator given by eq. (3) provided the electron charge e be replaced by the charge of a 
Cooper pair 2e and £ be the groundstate energy of H(B). For real filaments, the 
thickness is usually not small enough, and a correction due to the bulk must be 
introduced to fit the experiments.

Eventually the Grenoble group (Chaussy, Pannetier, Rammal and coworkers) per­
formed an experiment on a hexagonal lattice [Pannetier (83)] and a square lattice 
[Pannetier (84)]: they measured the field dependence of the critical temperature, which 
is related through (13) to the corresponding groundstate energy of the linearized 
Landau-Ginzburg equation. The calculation of £ is quite easy numerically and the 
comparison with the experiment is amazingly accurate (fig. 2). Not only do we get a flux 
quantization at integer multiples of (p{] (</>,= hlle) but also at fractional values, exactly 
like in the Hofstadter spectrum. Later on the experiment has been performed on a 
Penrose lattice, a quasi periodic one [Behrooz], and also on a Sierpinsky gasket [Ghez].

M ore recently, the Grenoble group realized that the measurement of the magnetic 
susceptibility near the critical line is related to the derivate of £ with respect to flux 0/ 
thanks to the Abrikosov theory of type II superconductors [Abrikosov]. The Wilkin- 
son-Rammal formula (see [Bellissard (88b)] and section III below) permits to com­
pute this derivative at each rational value of Again the comparison with the 
experiment is amazingly accurate [Gandit]. The magnetic susceptibility admits a 
discontinuity at each rational value of <p/ in agreement with the Wilkinson-Rammal 
formula. To date this is the only experiment where these quantities about the Hofstad­
ter spectrum, can be measured so accurately'.

1-4. Normal Conductor networks:
In a normal metal, one usually explains the weak localization by the existence of an 
interference increasing the backscattcring [Bergmann], More precisely, due to the 
slight disorder in the metal, one considers the electron wave as scattered by the 
randomly distributed impurities. In this process, considering a diffusion path 0, 
A,..., A,, O 'the averaging over the positions Af, A?,..., of the scattcrers usually decreases 
the sum of the diffusion amplitude distroying all interference. However, if 0=0' 
(backscattering), the waves following the path forward 0, Ap A?,--- and backward 
0, A, A ,..., A], 0 have no phase difference and they always interfere whatever the 
position of the scatterers. Thus the backscattering amplitude is higher than the forward 
scattering, decreasing the electric conductivity.

This effect however occurs as long as the time reversal symmetry is not broken. 
Adding a magnetic field will decrease the backscattcring and the magnetoresistance as 
well. The phase shift between the two forward and backward paths will be given by 
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2Jie(()/h for each of these paths, namely 27l2e(p/h = 2jl<pl (pf] with now = h/2e. Thus as 
for superconducting systems the effective charge is 2e instead but the mechanism is 
completely different.

Fig. 3: A typical diffusion path for a quantum wave. The phase shift between the path O, A( 1),..., A(n), O and 
the path O, A(n),..., A( 1), O is 27tcp/<p(, where 4>„ = h/2e. The replacement of e by 2e comes from the weak 
localization effect and not from the existence of pairs as in the theory of superconductivity.

The computation of the conductivity is always tricky, in order to take into account 
the collision time and the phase coherence time. But this weak localization approach 
gives rise to a correction der to the conductivity given by [Bergmann, Dougot (85) & 
(86)]:

öo(x) = -2lne~lh C(x,x) (15)

where C(x,x‘) is the Green function defined as the solution of:

{ (-id - A(x))2 + -V } c(*’*) = &(*-*) 06)
h <P

In this formula, represents the phase coherence length. C(x,x) is usually called the 
“Cooperon”.

One way to investigate this effect consists in looking at a filamentary conductor in 
which there are loops. If L is the typical loop size, and I the mean free path, one must 
have l«L, in order to get weak localization results, but L< if one wants to observe 
the interference effect. In this case, the magnetoresistance must be the same for each 
magnetic field such that the flux through the loop is an integer multiple of These 
oscillations have been observed first by Sharvin and Sharvin [Sharvin] on a simple loop 
and the phenomena are enhanced for a regular lattice of thin wires. Treating eq. 16 as
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the Landau-Ginzburg equation for a lattice offilamentary superconductors, we eventu­
ally obtain the Cooperon from the value of the Green function of the Harper hamilto- 
nian H(B). The actual formula for the resistance of a regular 2D lattice was computed 
by Dou^ot and Rammal [Dougot (85)&(86a)] and is given by: 

ychrj-shij
0^0 (1 + 2 shr) T ( 4chr/ - H(B) ) } (17)

a
(18)

where Z is the coordination number of the lattice, “a ” is the lattice spacing, .S' is the cross 
section of the wires, is the conductivity of the corresponding perfect conductor as 
computed by neglecting the weak localization effect, and H(B) is the Harper operator 
for the corresponding lattice (for a square lattice see eq. 3). In the formula (17), T 
represents the trace per unit volume of the operator in parenthesis (see § III).

The measurement of such a resistance has been performed again by the Grenoble 
group [Dougot (85) (86b)] and the comparison with the experiment is also amazingly 
good. This is a spectacular confirmation of the validity of weak localization theory.

1-5. Quasicrystals:
In 1984, Schechtman, Blech, Gratias, Cahn [Schechtman] found a new kind of crystal­
line order in an Al-Mn alloy giving rise to a perfect X-ray diffraction pattern with a 
five-fold symmetry. Since it is well known that no cristalline group in 3D exists with a 
five-fold symmetry axis [Mermin], they were led to admit that the translation invar­
iance was broken. Nevertheless because of the quality of the diffraction picture, they 
proposed a quasi periodicity atomic arrangement. In the early seventies, Penrose 
[Penrose] had produced examples of quasi periodic tillings of the plane, leading to 
examples with a five-fold symmetry axis. A systematic rigorous framework of his ideas 
was proposed by de Bruijn [de Bruijn] and new constructions permitted to produce 
such arrangements in 2D and 3D. One construction consists in projecting a higher 
dimensional regular lattice onto a 2D or 3D linear subspace with incommensurate 
slopes. The icosahcdral symmetry observed in the original samples, is realized in Z6, 
supporting a representation of the icosahedral group [Duneau, Kramer], This repre­
sentation can then be decomposed into a direct sum of two irreducible representations 
of dimension 3 corresponding to subspaces denoted by E+ and E . To get an example of a 
quasiperiodic lattice the strip method consists in considering the “strip” Eobtained by 
translating the unit semi open cube [0,1)v6 in Rh along the E+ directions, and in 
projecting all points in Z ’ fl E on E along the E direction. If now E+ is identified with 
R3 one gets a sublatticc in 3D invariant by the icosahedral group which is obviously 
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quasi periodic by construction. Moreover it can be shown that such a structure is also 
invariant by a discrete group of dilations generated by some power of the golden mean. 
This last fact is not so surprising since the golden mean is related to the cosine of 2jt/5. 
If one represents the sites of this lattice by means of the sum of Dirac measures located 
at each site, the diffraction pattern obtained by taking the Fourier transform of this 
measure coincides in position and also rather well in intensity with the experimental 
observation [Gratias]. Other kinds of quasicrystals have been observed with ten-fold, 
twelve-fold, and more recently eight-fold symmetries [Kuo] giving rise to a new area in 
crystallography, called “non Haüyan” in contrast to the standard theory originally 
formulated by Haüy.

Nevertheless we will have eventually to understand the electronic or mechanical 
properties of such structures. The phonon spectrum, namely the distribution of the 
vibrational modes is needed to compute the heat capacity of the thermal conductivity of 
the quasicrystal. The electron spectrum will help in computing the electric conductiv­
ity. Unfortunately quasi periodic Schrödinger operators in more than one dimension 
are not yet understood. This is probably the reason why most of the models investigated 
up to now are one dimensional. The strip construction in one dimension from Z leads 
to a chain of points x on the real lines such that x —x takes on two incommensurate

* n n+1 n
values distributed in a quasiperiodic way. The phonon spectrum for such a crystal can 
be described by the spectrum of the following discrete Schrödinger equation [Luck]:

+ ip(n-\) + Å X (x-na) ip(n) = E ip(n) (19)

where / represents the characteristic function of the interval A of the unit circle, x is a 
random phase defined modulo 1 and Ct is an irrational number. It turns out that the 
spectral properties of this family of equations are fairly different from the properties of 
the Harper or Almost Mathieu equations. As was proved by Dclyon and Petritis 
[Dclyon (86)], for a large set of cPs (19) has no eigenfunctions converging to zero at 
infinity. Moreover, an argument due to KadanofT, Kohmoto and Tang [KadanofT], and 
Ostlund [Ostlund (83)] supplemented by rigorous proofs of Sütö [Sütö] and Casdagli 
[Casdagli], shows that for a the golden mean, and Å big enough, the spectrum is a 
Cantor set of zero Lebesgue measure and non-zero Hausdorffdimension. In particular 
the spectral measure is singular continuous. The spectrum of (19) as a function of tv has 
been computed numerically by Ostlund and Pandit [Ostlund] and has a simpler 
structure than the Hofstadter spectrum (fig. 2). This work suggests that the spectrum is 
a Cantor set of zero Lebesgue measure for any irrational tv’s. The corresponding 
eigenstates for a t lie golden mean were partially computed by KadanofT, Kohmoto and 
Tang and also by Ostlund et al. [Ostlund] and exhibit strong recurrence properties in 
space, being localized around an infinite sequence of points, a result which looks like 
intermittency. In other words if the wave function is interpreted as the amplitude of the 
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lattice excitation in the crystal, there is an infinite sequence of clusters of atoms far away 
from each other, in which the lattice oscillations are big whereas the other atoms are 
essentially at rest.

The corresponding two dimensional model on a Penrose lattice has been studied 
numerically by Kohmoto and Sutherland [Kohmoto], and is likely to provide also a 
Cantor spectrum with spatial intermittency. They have discovered also the existence of 
infinitely degenerate eigenvalues with eigenstates localized in a bounded region (mo­
lecular states), like in the case of a Sierpinski gasket [Rammal (84)]. However essential­
ly nothing is known on the nature of the spectrum.

II. Schrödinger Operators with Almost Periodic Potential:
In this section we consider a Schrödinger operator H on R;) (continuous case) or Zn 
(discrete case) with D—\ in most cases and some indications for D>2, namely:

H ip(x) = -Axp(x) + V(x)ip(x) ip(x) cL2(RD)

or (1)

H i[f(x) = ^p(x-e) + V(x)ip(x) ip(x)

where V is almost periodic on R/J or on Z°.
These operators exhibit three kinds of properties:

- they tend to have nowhere dense spectra. But it is only a generic property in general; 
counter examples are known.

- if Pis sufficiently smooth, they have a tendency to exhibit a transition between an 
absolutely continuous and a pure point spectrum when the coupling constant is 
increased. This is interpreted physically as a metal-insulator transition. In most 
cases investigated, the eigenfunctions corresponding to the absolutely continuous 
component are Bloch waves w'hereas the eigenstates of the pure point spectrum are 
exponentially localized.

- if the potential is not smooth, if the frequency module is not diophantine or if the 
coupling constant is critical, the spectrum has a tendency to be singular continuous.

II-l. Nowhere dense spectra:
Historically, one of the first rigorous results concerning the gaps of a Schrödinger 
operator with a quasi periodic potential was provided by Dubrovin, Matveev and 
Novikov [Dubrovin], Investigating quasi periodic solutions of the KdV equation by 
means of the inverse scattering method, they were able to construct a class of potentials 
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for the ID case giving rise to a spectrum having finitely many gaps. This result has been 
recently extended by a work of Johnson and de Concini [ Johnson] for the case of 
infinitely many gaps having some regularity property. This family of potentials is 
obtained by constructing a Jacobi surface depending on the spectrum and a canonical 
torus associated to that surface, in such a way that Cis the restriction of an algebraic 
function on this torus to the orbit of a constant vector field on this torus. This is the 
reason why such a potential is called “algebraic-geometric”. They constitute a family 
with a finite number of parameters and for this reason it is non generic in the space of 
almost or even quasi periodic functions with the same frequency module.

T heorem 1: The set of almost periodic finite zone potentials with a spectrum given by F 
= U 0 [A^.,F2.+1] with F2V+1-°° is isomorphic to the Jacobian variety J (T) (namely a 
2N-torus) of the Riemann surface R(T) = { (W,E) eC2; fK2-P2V+1 = *s
the polynomial /7

0

In 1980, J. Moser [Moser], J. Avron and B. Simon [Avron (81)] and Chulaevski 
[Chulaevski] proved a result concerning the generic character of nowhere dense 
spectra. A limit periodic function /is a continuous function on R which is a uniform 
limit of a sequence of continuous periodic functions on R. If F is the period of^f we
must have T+[/T 6 N. The same definition applies for limit periodic sequences. Let L 
be any separable Fréchet topological vector space of limit periodic functions or se­
quences, we get:

Theorem 2: IfD= 1, there is a dense G^set L°in L such that if VeL°, the operator //in (1) 
has a nowhere dense spectrum.

0

An interesting class of the limit periodic models giving rise to a nowhere dense 
spectrum, is given by Jacobi matrices of a Julia sets. The first example was provided by 
Bellissard, Bessis and Moussa [Bellissard (82d)], and concerned polynomials of degree 
2. Their work was extended to polynomials of higher degree by Barnsley, Geronimo and 
Harrington [Barnsley (83,85)]. Let Fbe a polynomial of degree A with real coefficients. 
One will assume that P is monic, namely P(z)=Z' + O(£A~’). One considers the dyna­
mic on the complex plane C defined by:

z(n^\) = P(z(n)) (2)

In general it has finitely many attracting fixpoints including the point at infinity, each 
having an open basin of attraction. The Julia set /(P) of P is the complement of the 
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union of them. It is a compact set. The Fatou-Julia theorem [Fatou, Julia] gives 
necessary and sufficient condition in order that J(P) be contained in the real line and 
completely disconnected. When this happens, there is a unique probability measure /Z 
on J(P) called the balanced measure, which is both P and P} invariant. It is singular 
continuous. The general theory of orthogonal polynomials allows to associate canoni­
cally to p, a Jacobi matrix (namely an infinite tridiagonal matrix indexed by N) in the 
following way: consider in I2 (J(P), ) the orthogonal basis pn obtained from the set of 
monomial functions xej(P)—>xn, neN, by the Gram-Schmidt process. It is easy to 
show that p is a monic polynomial of degree n, such that pn(P(x))=pn^(x) and p{= 1. The 
Jacobi matrix H(P) associated to P is the matrix operator of multiplication by x in 
I? (J(P), ), in the previous basis properly normalized. SinceJ(P) is compact it follows 
that H(P) is a bounded operator. By construction, J(P) is the spectrum of H(P) and 
is equivalent to its spectral measure. Therefore we get a class of self-adjoint operators 
having a singular continuous spectrum. The remarkable property of this class lies in the 
following remark. Let D be the operator on L?(J(P), pi) defined by D*f(x)=f(P(x)). 
Due to the invariance properties of the balanced measure, it is easy to sec that D is a 
partial isometry such that [Bellissard (85b)]:

DZ>*=1 D*D=n D(zl~H(P))~}D* = P'(z)/N {P(z)1-H(P)}~' (3)

where 77 is the projection onto the subspace generated by the polynomials of the form 
p eN. If one identifies L2 (J(P), a ) with I2 (NJ through the basis given by thep ’s, D 
appears as the dilation operator Df(n) — f(Nn). The main expected result can be 
summarized in the following conjecture (this part has been only partially solved in 
[Bellissard (85b)]):

Conjecture: If Pis a monic polynomial of degree N with real coefficients, such that no 
critical points lie in its Julia set, its Jacobi matrix H (P) is the norm limit of a sequence 
H (P) of periodic Jacobi matrices indexed by N, with periods N'1.

0

If P is a polynomial such that the conclusion of the previous conjecture is true, we will 
say that it has the property LP LP has been rigorously proven in the following cases 
[Barnsley (85)]:

Theorem 3: P has the property LP in the following cases:
(i) if P(z) — £2_Xwith Å> 3.
(ii) if P(z) ~ a^TN(z/a) where 7"v is the Nth Tchebyshev polynomial and a>V3/2.
(iii) ifP(z) - a2' T^T(z/a)+b where N=3 provided a>5, | Z»| <5 or 7V=4 and a>2, \b\ < 22.

0 
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Another class of limit periodic operator of interest is given by the so-called “hierarchi­
cal models”. The first examples were provided by Jona-Lasinio, Martinelli and Scop- 
pola [Jona (84&85)], to illustrate ideas on long range tunneling effect. They got a large 
class of models with nowhere dense spectra and singular continuous spectral measure. 
Along the same line Livi, Maritan and Ruffo [Livi] introduced a more specific example 
given by (1) with:

K<0)=0 T(2n(2/+l))=z/(nJ (4)

for which one can prove rigorously that the spectrum is nowhere dense with zero 
Lebesgue measure provided limsup >oo(v(n+ \)~v(n))/(v(n)~v(n~ 1)) > 2 [Bcllissard 
(87)].

The most challenging problem is obviously the spectrum of the Almost Mathieu 
operator H(a,n, x) defined on Z2(Z) by (1) with V(n) = 2/.1 cos2Jt(x-na). Here /.i 
represents a coupling constant and can be restricted to R+without loss of generality; a is 
a real number but since H(a+\,[i,x) = H(a,n,x) it can be seen as an element of the torus 
T: x is in T and represents a generic translation on Z for it is shifted by erwhen H(a, /1, x) 
is translated by 1 on Z. When tris irrational H(a,fi,x) is periodic and the usual Bloch or 
Floquet theory applies. Let be the union over x in T of the spectra of H(a, [i,x).
We first get:

Theorem 4: (i) If cv is irrational, the spectrum of H(a, u, x) coincides with X(ayi).
(ii) Aubry-André’s duality: for every a in T, fj,).
(iii) Aubry-André-Thouless’s bound: the Lebesgue measure of S(a, /J.) is bounded below by 
4|l-/z|.

0

(i) Results from the remark that H(a+\, p,x) is unitarily equivalent to H(ayi,x) by 
translation, and is is norm continuous with respect to x. Thus its spectrum is un­
changed under the shift x->x+a; and is continuous with respect to x. The Aubry- 
Andre duality is an argument due to Derrida and Sarma [Derrida] and used by 
Aubry-André [Aubry (78&80)] to exhibit a metal insulator transition. At last Aubry 
and Andre discovered numerically the bound on the Lebesgue measure of [i) and 
Thouless proved it rigorously [Thouless (83)].

In their original work Aubry and Andre found also that Z(a,[i) was a Cantor set 
whenever a is irrational. This was an extension of the work by Hofstadter on Harper’s 
equation [Harper, Hofstadter] (see fig.2). The earliest rigorous result in this context 
was given by Bcllissard and Simon [Bcllissard (82c)]:

Theorem 5: There is a dense G set ß in [0,1] \R such that if (a, p) eß then Z/o, p) is 
nowhere dense.

0
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Actually, one may conjecture that for /J.^0 and O'irrational the spectrum is nowhere 
dense. In this result only a generic set of values of a gives this property. This is 
insufficient for we do not even know whether ß has positive Lebesgue measure. This 
theorem has been supplemented by the following result of Sinai [Sinai]:

Theorem 6: Let a be an irrational number with continued fraction expansion [aQ,
such that const, n2. There is such that if \/.i\ > |1() or if\p\ — then the 

Almost Mathieu operator has a nowhere dense spectrum of positive Lebes­
gue measure.

0

The previous result is in a sense complementary to theorem 5, for the set of oTor which 
theorem 6 holds is the complement of a dense set but has a full Lebesgue measure.

Another recent result has been provided by Helffer and Sjöstrand [Helffer (87)] 
using a semiclassical analysis following a renormalization group argument of M. 
Wilkinson [Wilkinson (84b)]. It concerns specifically the case /1=1, namely the Harper 
equation.

Theorem 7: Let be positive. There is A"o a positive integer such that for any irrational 
number a with continued fraction expansion [aQ, zz;,...J such that the
spectrum of the Almost Mathieu operator H(a,(Å = \,x) has the following structure:

(i) its convex hull is an interval of the form [—2 + 0 (1/flj), 2—0 (1/^)].
(ii) there is an interval of length 2EQ+O (1/^)centered at an energy orderO (1/^)

such that SpH(a,[i,x)\J is contained in the union of intervals z=#0)of
length exp(-C(i)la^) with C(i) ~ 1, separated from each other by a distance of order 
0(1/^).

(iii) for /#=() let J be the affine increasing map transforming J into [—2,2], then 
f(SpH C cr, /1, x) H is contained in the union of intervals J. k having the same properties 
as then’s provided be replaced by a^, and so on.

0

In this result at each step one has to exclude a central band JQ , J in such a way that
nothing can be said on the Hausdorff measure of the spectrum which is believed to be 
1/2 from numerical calculations [Tang], On the other hand, the restriction on a is 
drastic for if NQ=P 1, it excludes a set of Lebesgue measure one. However it takes into 
account the self-reproducing properties seen on the Hofstadter spectrum [Hofstadter],

A complementary result on a wider family of quasi periodic operators will be given in 
section III (Theorems 6&7).

Another interesting class of almost periodic Schrödinger operator with nowhere 
dense spectrum, is provided by ID quasicrystals. The first results were provided
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simultaneously by Kadanoff et al. [Kadanoff] and by Ostlund et al. [Ostlund]. They 
considered the following model on /2(Z):

Hy(n) = ip(n+\)+ xp(n-l) + ^(n) (5)

Writing the eigenvalue equation Hx[)(n) = Elp(n) in the form (//(zi+l) = M(n) ^(n) where 
Wfn) is the vector in C with components (ip(n), ip(n—\)) and M(n) is a 2x2 matrix 
depending upon E, they showed that if F is the nth Fibonacci number defined by 
F=F=1 and F+ =F + F_1? one obtains A(n)=M(Fn) M(Fn~\)... df(l) through the 
following recursion:

A(n+\)=A(n-\) A(n) (6)

If now t(n) = trA(n), one easily gets:

t(n+2) = t(n+\)t(n) - t(n-\) (7)

If T(n)=(t(n-\), t(n), Zfw+lJJeR3, (6) is equivalent to T(n+\) = G(T(n)), where 
G(x,y,z)~(y, Z,yz~x). A constant of the motion is provided by I(x,y,z) - x^+y^+^—xyz 
which defines a hypersurface Z/F) in R ’ depending on the choice of,Hand E. By looking 
at those values of E for which the sequence t(n) is bounded one gets a closed subset of 
the spectrum of H [Kadanoff, Ostlund (83)]. That it is the full spectrum is a result of 
Sütö [Sütö]. Remarking that G admits some homoclinic point on E(E) [Kadanoff], 
Casdagli [Casdagli] described the spectrum by mean of a Markov partition and a 
symbolic dynamic to prove that the spectrum is a Cantor set of zero Lebesgue measure 
and non-zero Hausdorff dimension for //>8(11115 value is probably not the optimal 
one):

Theorem 8: Let H be given by (5):
(i) The spectrum of H is given by the set of energies E such that the sequence t(n) = 
tr{M(FJ M (F—\)... Af(l)} is bounded.
(ii) The spectrum of H is a Cantor set of zero Lebesgue measure and non-zero 
Hausdorff dimension for //>8.

0

11-2. The Metal-Insulator transition:
In their original work Aubry-André [Aubry (80)] gave an argument on the Almost 
Mathieu operator to show that a metal insulator transition should occur while the 
coupling constant varies from //<1 to //>1. This argument called “Aubry-André’s 
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duality” was originally provided by Derrida and Sarma [Derrida] and has been 
interpreted by Aubry-André in the context of ID incommensurable chains. Let ip be a 
sequence indexed by Z and solution of the Almost Mathieu equation:

ip(n+l) + ip(n—\) + 2/4 cos2Ji(x~na) ip(n) = E ip(n) (8)

For (J. very small, a perturbation argument suggests for ip an expansion of the form:

f(p) (9)

Taking this ansatz seriously leads for the f(p)'s to the following equation:

f(P+\) +f(P~V + 2//4 cos2Ji(k-pa) f(p) = El^f(p) (IO)

We recognize the Almost Mathieu equation after changing /4 into I//4 and rescaling the 
energy E into E/ a. Suppose that (9) converges say uniformly with respect to x, it follows 
that the sequence {J(p)‘,pe7.} is certainly square summable, and that for /4 small, the 
“dual equation” (IO) admits E as an eigenvalue. Thus /4=1 is critical and separates a 
regime where perturbation expansion should in principle be relevant leading to Bloch- 
like waves, namely extended states, whereas at high coupling the previous “duality” 
argument gives eigenvalues with localized states. Moreover this argument shows that 
exponential fall-off of the f(p)\, namely exponential localization, implies analytic 
dependence of the Bloch waves in the parameter x—na.

To go beyond this heuristic argument, one usually introduces the so-called “Lyapou- 
nov exponent” y representing roughly speaking the rate of exponential increase of a 
generic solution of (8) at infinity. More precisely let lP= (t/>(0), 1^(1)) be a vector in C2, 
then let ip be the unique solution of (8) with initial conditions given by ML Then y is 
defined by:

Y(E,n,a.x,lP) = lirnsup^ lo-8><"+ir + K) (11)

Proposition 1: Let H be given by (8) with irrational:
(i) y(E, /4, a,x, lP) is independent of almost surely (Lebesgue measure).
(ii) y(E, /4, a,x) is non-negative and independent of x almost surely (Lebesgue mea­
sure).
(iii) Herbert-Jones-Thoulessformula: [Herbert, Thouless (72)]: if ^_v is the character­
istic function of the interval [—TV,TV], one has:

Y(E,ii,a) = limv_>=c Tr{\[N V] log | E-H\ } (12)



52 MfM 42:3

(iv) Aubry-André’s duality formula [Aubry (80)]:

aj = logy(£/jU, l//i, a) (13)

(v) Aubry-André-Herman’s bound [Aubry (80), Herman]:

yf£,^,a) > log// (14)
0

This set of results can be used for getting an information about the nature of the spectral 
measure:

Theorem 9: Let H be the self-adjoint operator given by (8):
(i) Floquet-Bloch theory: If cr is rational, //has purely absolutely continous spectrum.
(ii) Pastur-Ishii theorem [Ishii, Pastur]: If O'is irrational, for fi> 1, the absolutely contin­
uous spectrum of H is empty.
(iii) Delyon’s theorem [Delyon (87)]: If a is irrational, for/z< 1, the point spectrum of//is 
empty. If 1, the point spectrum if it exists is contained in the set of energies where the 
Lyapounov exponent vanishes, and the eigenstates are in /2(Z) but not in Z’(Z).

0

In the rational case H is periodic and the usual Floquet-Bloch theory applies. In 
particular the eigensolutions of (8) are Bloch waves of the form given by (9), with an 
energy E(k) depending analytically on k. In the irrational case, due to the Aubry- 
André-Herman bound, for qt> 1 the Lyapounov exponent is positive, and the Pastur- 
Ishii theorem, which is valid for any ID Schrödinger operator with random potential, 
implies the absence of absolutely continuous spectrum. The Delyon result is specific to 
the Almost Mathieu model since it uses Aubry-André’s duality in an essential way.

The question is now' to know whether for 1 the spectrum is pure point as predicted 
by Aubry-André’s duality. The answer is actually no in general as it follows from the 
following result by Avron and Simon [Avron (82)]:

Theorem 10: Let H be given by (8). There is a dense G& set £ of irrational numbers in 
[0,1] of zero Lebesgue measure such that if ac£, and q> 1, // has a purely singular 
continuous spectrum.

0

This result is actually a special case of a theorem by Gordon [Gordon] which extends to 
a wide set of examples. On the other hand, the £ is contained in the set of “Liouville 
numbers” namely those irrational numbers for which there is a sequence of rational 
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pn/qn such that | <*~pjqn\ — l/<7n" for all n. These numbers are so rapidly approximated by 
rationals that the solution of (8) look like Bloch waves on long distances, and never 
succeed to vanish at infinity.

Conjecture: There is a dense Gd set E of irrational numbers in [0,1] such that if aeZ, 
and (1< 1, H has a purely singular continuous spectrum.

However one can always argue that Liouville numbers are exceptional since they have 
Lebesgue measure zero. Almost every number is “diophantine” namely for every o> 2, 
there is C>0 such that \a—p/q\ > C!qa for all plq. Using the Kolmogorov-Arnold- 
Moser method, Dinaburg and Sinai [Dinaburg] got the existence of some absolutely 
continuous spectrum with Bloch waves for models given by (1) on R. The adaptation of 
their technics led Bellissard-Lima-Testard [Bellissard (83a)] to a partial proof of the 
Aubry-André conjecture, in the sense that only a closed subset of positive Lebesgue 
measure of the spectrum exhibits a metal insulator transition. This result has been 
recently supplemented by Fröhlich-Spencer-Wittwer [Fröhlich] and by Sinai [Sinai] 
which gives:

T HEOREM 11: Let H be given by (8) and let a satisfy a diophantine condition of the form
I a-p/q I > C/qa for all p/q for some <J> 3. Then:

(i) there is M()>0 such that if /1Q, the absolutely continuous component of the 
spectrum of H is non empty and is supported by a set of Lebesgue measure bigger than 
4-o(l) as (J,—>0.The corresponding eigensolutions have the form (9) with exponential­
ly decaying/tø/s.
(ii) there is M()>0 such that if/i>/zo,for almost all x, the spectrum of His pure point with 
exponentiallv localized eigenstates.

0

The previous result has been extended to various examples on the real line in particular 
[Dinaburg, Fröhlich]:

Theorem 12: Let H be given by (1) on R.

(i) If V(x) = ^lieZv v(n) exp(in.a) x) with cue Rv satisfying\n.cd| > C/|«|<7for all «eN' and 
some C>0, <j>v. We suppose = ^jeZv \v(n)\exp(-r\n\)<&>. Then there is EQ real 
such that in the interval H admits some absolutely continuous spectrum with 
eigenfunctions given by Bloch waves of the form ip(x) = exp(iLx) exp(in.a) x)
where the Fourier coefficients f(n) decrease exponentially fast.
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(ii) If V(x) = - qi { cos 2Jtx + cos2jt (ax+Ø)} where a satisfies the diophantine condition 
I or-p/q\ — C/qi for all p/q, a is large enough, then for almost all q, the spectrum of H in 
the interval [-2Ju,-2Jw+O( (1 + cr))] is pure point with exponentially localized
eigenstates.

0

It is interesting to note that before these results, nice examples of quasi periodic 
Schrodinger operators on Z have been produced. P. Sarnak [Sarnak] investigated a 
large class of non self-adjoint operators for which he has been able to compute exactly 
the spectrum, and found also a transition between pure-point and continuous spec­
trum. One of the simplest examples of Sarnak operators is given by H(qi)ip(n) = tp(n+V) 
+ qiip(n) exp (2iJTO7z). Using a KAM algorithm and an inverse scattering method W. 
Craig [Craig] produced almost periodic potentials having essentially an arbitrary pure 
point spectrum. Along the same line Bcllissard-Lima-Scoppola [Bellissard (83b)] and 
Pöschel [Pöschel] exhibited a class of unbounded potentials having dense point spec­
trum on R. This class was derived from the “Maryland model” [Fishman (82)] 
described by Fishman-Grempel-Prange and which is solvable: it is given by (1) on Z 
with V(n) = /atari Ji(x-na). It has dense pure point spectrum on R if a is diophantine, 
whereas if a is in some class of Liouville numbers it has singular continuous spectrum 
[Fishman (83), Simon (84)] (see section 11-3 below).

Another question is related to the existence of mobility edges, namely points in the 
spectrum separating pure point from continuous spectrum. This has been observed 
numerically by Aubry and André [Aubry (80)], and Bellissard-Formoso-Lima-Tes- 
tard [Bellissard (82b)] found an almost periodic Schrödinger operator on R for which 
mobility edges do exist. However the corresponding potential is not smooth and the 
existence of mobility edges for smooth potentials is still an open question.

11-3. Singular continuous spectra:
In 1978 Pearson [Pearson] gave an example of Schrödinger operators with a potential 
vanishing at infinity with purely singular continuous spectrum. For a long time this 
example was considered as pathological and most of the rigorous results in the litera­
ture were concerned with sufficient conditions to avoid singular continuous spectra. In 
the early eighties, when one started getting results for Schrodinger operators with 
almost periodic or random potentials, the result of Avron-Simon [Avron (82) ] (theorem 
10) changed completely the situation and one soon realized that singular continuous 
spectra were not exceptional, if not the rule for problems related with Solid State 
Physics. One of the most famous still conjectured example is proved by a 2D Bloch 
electron in a perfect cubic or hexagonal or triangular crystal submitted to a uniform 



MfM 42:3 55

magnetic field such that the flux through a unit cell is an irrational multiple of the flux 
quantum: the Hofstadter spectrum is a good example.

The argument of Avron and Simon was based on the remark that 1) in a certain 
regime, the Lyapounov exponent is positive, which by the Pastur-Ishii theorem pre­
vents absolutely continuous spectrum, and 2) that for a certain class of Liouville 
numbers the potential is extremely well approximated by periodic potentials (Gordon 
potentials), which implies by Gordon’s theorem [Gordon] the absence of point spec­
trum. The very same argument applies in various situations. For example in the 
Maryland model namely the equation (1) on Z with V(n) = tanJT(x-na), Simon [Simon 
(84)] defined the quantity L(a) = limsup\/n log (|sin(Jina)|) and proved that if 
L (a) - 00, the spectrum is purely singular continuous. Fishman-Grempel-Prange [Fish­
man (83)] investigated the properties of wave functions and found a scale-invariance, 
showing that they are almost localized on a very sparse sublattice which recurrently 
reproduces itself at larger scales. The very same argument works as well for a potential 
of the form V(n) — 2/J.cos2ji( cm2+xn+j), for both Herman’s bound (proposition 1 (v)), if 
a is irrational and Gordon’s theorem, if a belongs to a class of Liouville numbers, 
apply.

In the section II-l. we also introduced the Jacobi matrix of a Julia set, by construc­
tion, its spectral measure class is given by the balanced measure on the Julia set. If it is 
completely disconnected, then one knows that this measure is singular continuous, thus 
we get another class of singular continuous spectra. For a polynomial of degree 2, P(z) — 

the corresponding Jacobi matrix is given by [Bellissard (82d)]:

Hty(n) = r(n+\)ip(n+\)+r(n)‘ip(n-\) «cN t/>(—1) = 0
r(0) = 0 r(2n)2+r(2n+l)2 = Å r(2n~V)r(2n)=r(n) (15)

Theorem 13: Let H be given by (15) on N. For Å>2 the spectrum of/7 is a Cantor set of 
zero Lebesgue measure and the spectral measure is purely singular continuous. Any 
point E in the spectrum can be uniquely labelled by an infinite sequence (or coding) 
<?=(<]],Op...,cr,...) of 0’s and l’s, such that E = crJÅ+c^ (Å+cr ...)1/2)1/2. The spectral 
measure on R is the image by this map of the Bernoulli measure on the coding. The 
corresponding eigensolution of //i/> = Elp satisfies JCT(2*n) = J>T^(n) where 
7o= o2,..., o + ],...) and the Lyapounov exponent vanishes on the spectrum.

0

This result can be extended to any polynomial. It shows in particular that wave 
functions are not well localized, in contrast with they result of the Maryland group. 
Moreover they exhibit some chaotic behaviour in space since their value in the large 
depends upon a random sequence of Os and Is.
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In the case of ID quasicrystals Delyon and Petritis [Delyon (86)] proved the 
following result:

Theorem 14: Let H be given by (1) on Z with V(n) = pLXA (x—na) where .4 is an interval on 
the circle. For Lebesgue almost all O', and any A, the spectral measure of H is purely 
continuous for Lebesgue almost all x.

0

Ostlund and Pandit [Ostlund (84)] computed the spectrum of this operator as a 
function of a and they found a fractal structure suggesting that the Lebesgue measure of 
the spectrum may be zero. This is an indication that the spectrum may be singular 
continuous.

At last hierarchical models of Jona-Lasinio, Martinelli and Scoppola [Jona (85)] 
also give rise to singular spectra. In the case of Z, the class of models described by Li, 
Maritan, Ruffo [Livi] gives [Bcllissard (87)]:

Theorem 15: Let H be given by (1) on Z with F(0) = 0 and F(2"(2A:+1)) = v(n) for all 
keZ. If limsup (p(w+l)-p(w))/(y(n)-p(n-l)) > 2, H has a purely singular contin­
uous spectrum.

0

These various results show that singular continuous spectra occur normally in many 
problems of Solid State physics. However Simon ct al. [Simon (85&86)] in an argu­
ment used for localization gave a result which shows that such spectra are in a certain 
sense quite unstable under a random perturbation:

Theorem 16: Let H be a self-adjoint operator having a spectrum supported by a 
nowhere dense set C of zero Lebesgue measure. Let ip be a unit vector cyclic for H. Then 
for Lebesgue almost all a, the operator H(pi) = H+pt(ip,.) ip has pure point spectrum 
and the eigenvalues belong to the gaps of C.

0

This result has been verified for the Jacobi matrix H of the Julia set of a polynomial Pby 
Barnsley-Geronimo-Harrington [Barnsley (85)].

III. of Almost-Periodic Operators:
In 1972, Coburn, Moyer and Singer [Coburn] proposed a generalization of the Index 
formula for elliptic operators on R'1 with almost periodic coefficients. They introduced 
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the C*Algebra of pseudodifferential operators of zeroth order with almost periodic 
coefficients, and showed that essentially all steps of the usual Index theorem were still 
valid provided the usual trace of operators be replaced by the trace per unit volume. 
This idea was exploited later on by Shubin [Shubin] who realized that the integrated 
density of states of the physicists had a very simple form in this algebraic set-up. In the 
late seventies, A. Connes generalized the construction to elliptic operators on a foliated 
compact manifold differentiating along the leaves of the foliation [Connes (82)]. In 
many cases this C*Algebra admits a natural trace, but there are foliations for which no 
trace exists. It turns out that most of the problems in Solid State physics involving 
disordered media, in the independent electrons approximation have hamiltonian affil- 
ated to such a C*Algebra [ Bellissard (86)]. This has been used to get generic properties 
of the energy spectrum, such as a gap labelling theorem [Bellissard (82a), (85a), (86), 
Johnson (82). Delyon (84)], expressions of physical quantities as integrated density of 
states, Lyapounov exponents, current correlations, for instance. More recently, the 
definition of a differential structure which is quite natural physically and mathemat­
ically, permited to provide a mathematical framework to give a proof of the Quantum 
Hall Effect [Bellissard (88a&b)] and a detailed study of the Hofstadter spectrum 
[Bellissard (88b)].

1-1. Observables and the non-commutative momentum space:
To start with, let us consider the Almost Mathieu operator. In the section I, eqs. (7, 9, 
10) we wrote it in the form:

H = U+ U* + fi(V + V*) (1)

where U and V were two unitaries such that:

(2)

These two operators generate a C*Algebra . Zftv) called the rotation algebra. It has 
been introduced by M. Rieffel [Rieffel] and constitutes a remarkable object in the sense 
that it is nontrivially non-commutative whenever a is irrational. Nevertheless it is a 
simple object.

More generally, let H be the Schrödinger operator H = -A + V where V is almost 
periodic on R7\ The physical system described by H has no longer any translational 
symmetry and nevertheless it reproduces almost itself under a large translation. On the 
other hand the translated hamiltonian H is equivalent to H in describing the system. 
Therefore the whole family {//; x€ R/J}is a natural set of observables. If we insist in 
performing algebraic calculations, and we need them in practice, we will consider the 
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C*Algebra generated by {//; x€ RP}. Since // do not commute with H for x^jy, this 
algebra will not be commutative in general. It turns out that this algebra is usually 
simple to compute in practice [Bellissard (86)]: since Lis almost periodic, there is an 
abelian compact group ß call the hull of V, a group homomorphism/Trom Rn into ß 
with a dense image and a continuous function v on ß such that V(x) = v(f(x)). £2 is 
entirely defined by V or equivalently by II. The C*Algebra . is then the crossed 
product C ( £2)>7RD ofthe algebra C (£2) of continuous functions on ß by the action of 
Rw defined by f.

A similar treatment can be performed if H is a tight binding approximation, namely 
an hamiltonian on a lattice like TP. It is then sufficient to replace the translation group 
Rfl by Zz<

A. Connes developed an analogy with topology or geometry. By Gelfand’s theorem 
(see [Pedersen] for instance), an abelian C*Algebra is isomorphic to the space of 
continuous functions on a locally compact Hausdorff space vanishing at infinity. Let us 
decide, by analogy, to identify a non-commutative C*Algebra with the space of 
continuous functions on some virtual object which will be called a “non-commutative 
topological space”. In our framework, let us consider the special case for which Lis 
periodic. The same construction as before, with the addition of Bloch theory leads to a 
C*Algebra isomorphic to the tensor product C(.73)® .77'where ./FT is the algebra of 
compact operators on a separable Hibert space and represents degrees of degenaracy, 
and is the space of continuous functions on the Brillouin zone ./? (which is 
usually isomorphic to a torus). Therefore, the periodic case is just the algebra of 
“functions” over the Brillouin zone (up to the deneracy described by .7/7) which is the 
crystal analog of the momentum space. By extension, the quasi periodic algebra will be 
naturally associated to a “non-commutative Brillouin zone”. In order that this analogy 
be efficient, one has to define on these C*Algebras the tools useful in usual geometry: 
integration theory, differential structure, etc,...

Integration may be obtained through a trace, namely a positive linear (non necessar­
ily bounded) functional Ton. / such that x(AB) = t(BA) whenever it is defined. It turns 
out that natural traces can be defined in our situation by mean of a “trace per unit 
volume”. Namely let dco be the normalized Haar measure on ß, which is invariant and 
(uniquely) ergodic with respect to the action of the translation group Rö. Let also A be 
an element of. 7 given by the kernel a(a>, x) namely acting on L2(R/)j through:

auwxj= Srd d* a(a>~f('}L'y^x_x') (3)

and a similar definition ifZ72 replaces Rn. We recall that elements of. / given by smooth 
kernels are dense in . 7. The trace per unit volume is then given by:

z (A) = (M\A\) Tr{XxAJ (4)



MfM 42:3 59

Using the definition (3) of A and the Birkhoff ergodic theorem (see [Haimos] for 
instance) one gets for almost every co in £2:

T (A) = limÄTR/) (1/|A|) J dx‘ a(a>-f(x); 0)= \Qdcoa(co; 0) (5)

Actually, in the present case, since the action defined byyis uniquely ergodic (namely 
the Haar measure is the unique ergodic ^-invariant probability measure on £2) the 
convergence in (5) is uniform with respect to CoeQ. One can easily check that (5) defines 
a faithful trace on . which is unbounded in the case of Rn but bounded and 
normalized in the case of ZD.

A natural differential structure can be defined if one remembers that our algebra is 
supposed to represent functions on the Brillouin zone: differentiating with respect to 
momentum variables is usually represented in Quantum Mechanics by commutators
with the position operators. Let X = (XJ. 
L2(Rö) through:

...D} be the position operator acting on

(a;i/4(x) = X. ip(x) i=A,...,D (6)

We define derivations d. on . by:

{A4} = 2vr[X,A]v i J (0 L r a)J (7)

or equivalently:

d. a (co, x) = 2 Lt x. a (co, x) (8)

The As are linear commuting maps on A, satisfying the fundamental formula of 
derivations, namely A (AB) = (d.A)B + A(d.B). Moreover x(dA) = 0 whenever the 
formula makes sense. This allows to get an integration by parts formula r((d.A)B) = 
-x(Ad.B) showing that usual rules in calculus still hold in this non commutative 
context.

In [Connes (86)] A. Connes gave also a generalization of line or surface integrals of 
differential forms. In the commutative context they define a de Rham current. In the 
non commutative case one may define a closed current as follows: giving T ,...,A in 

one introduces the formal objects by asking that d satisfy the usual rules
for a differential, namely d(AB) — (dA)B+A(dB) and </2 = 0; a linear combination of 
such objects for a fixed n, is called a form of degree n or «-form; let £2 be the space of 
«-forms, and Q(. Yd) be the direct sum of the £2’s. One extends the differential d to Q(^Y>) 
by linearity. A closed current is a linear functional Ton Q(^Y) with complex values such 
that if öco denotes the degree of co:
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(i) T(M}a)2) = (~)ÖÜ)'6^-T (æ2O){)

(ii) t (da)) = 0
(iii) T is a current of degree p whenever T (a>) = 0 for every «6 £2 if n ^p.

As it has been shown by A. Connes in [Connes (86)], a closed current is entirely defined 
by the (w+l)-linear mappings r: fÆ,A,...,AJe. Z—(A0</A1...</AJ characterized by 
the following relations:

(a) A )
n7

(b)
n

Zj 1 P T 64
7=°

This non commutative differential form theory gives rise to some cohomology namely 
the Connes cyclic cohomology and a generalization of the abstract index theorem 
which has already been used partially to the mathematical proof of the Quantum Hall 
Effect [Bcllissard (88a)].

Let us also indicate that besides the previous algebras, one has other physically 
relevant examples of observable algebras even in the quasi periodic context. For if one 
considers the situation in which a two dimensional Bloch electron is submitted to a 
uniform magnetic field B perpendicular to the plane where the electron lies, the 
hamiltonian is now:

(9)

where P ) is the momentum operator (namely P=h/2.\:Jt d), A = is the
magnetic vector potential solution of dA^dA^ = B,m is the electron effective mass, e its 
electric charge, and Lis a periodic potential. The kinetic part is no longer translation 
invariant because the vector potential breaks the translation symmetry. However 
adding a phase factor to the translation operator we get the following “magnetic 
translation” [Zak] on £2(R-):

{t/(a)i/4(x) =e'^Bx/WA t//(x-a) (10)

If a is a period of V, H commutes with t7(a). One can then show that the algebra 
generated by bounded functions of H and its translated is generated by operators A 
given by a kernel a(a),x) defined on T2xR2 as follows:

i//(x'){Alp} (x) = JR, d2x a(-x,x-x)elJTt'RxAx'h (11)
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In much the same way one gets a trace per unit volume and a differential structure on it.
A lattice version of this algebra is precisely given by the rotation algebra we defined 

in the beginning of this section. The trace and the differential structure are entirely 
defined by the following conditions:

(12 a)

(12 b)

We see that U and V become analogous to the coordinate functions £21Æ'' 1,2J of a
2-torus, if the trace is replaced by the normalized Haar measure, if the z)’s represent the 
usual partial derivatives. Because of (2) however this torus is non-commutative.

If one considers the problem of an electron on a quasicrystal submitted to a uniform 
magnetic field ond will get another kind of algebra which will be hopefully described in 
a further work [Bellissard (88c)].

III-2. Gap labelling and K-Theory:
In the section II we saw that a Schrödinger operator with almost periodic potential has 
a tendency to exhibit a Cantor spectrum. In particular it must have infinitely many 
gaps in a bounded interval. The question is whether there is a canonical way of 
labelling the gaps which is stable under perturbations or under modifications of the 
frequency module. It happens that this question is related to the computation of 
integers in the Quantum Hall Effect, and this justifies a complete study. The first gap 
labelling was provided by Claro and Wannier by a heuristic analysis of the Hofstadter 
spectrum [Claro (78)]. This labelling was stable under changes of the magnetic field 
eventhough the spectrum itself is modified in an intricate manner. The first rigorous 
results came in 1981 with the works ofjohnson and Moser [Johnson (82)] and the result 
of Bellissard-Lima-Testard [Bellissard (82a, 85a, 86) |. A proofin the case of the Almost 
Mathieu equation was provided by Delyon and Souillard [Delyon (84)]. Johnson and 
Moser proved it for the case of a ID Schrödinger operator with an almost periodic 
potential using ODE technics. But BLT used an algebraic approach namely the 
K-theory of C*Algebras and got general results valid in any dimension and for any 
reasonable pseudodifferential operator with almost periodic or even random coeffi­
cients [Bellissard (86)]. They used many of the powerful results discovered in the early 
eighties by the experts in C*Algebras and especially several explicit formular due to A. 
Connes. It is our aim here to summarize these results.

Let. be one of the C* Algebras of operators built in the previous section. Let also H 
be a self-adjoint operator on L2(RD) (or on Z2(Z/?)) bounded from below such that 
bounded continuous functions of H belong to . Physicists introduce first the in­
tegrated density of states (the IDS) in the following way:
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. I (E) = limÄ jRO(1/|A|) # (eigenstates of H\a with energy <£} (13)

where # denotes “the number of’, and H\ is the operator obtained by restricting H 
(say in the sense of forms) to a domain D of functions supported by A dense in L2 (A), 
whenever this makes sense. One can show that because bounded continuous functions 
of H belong to if is one of the previous algebras, H\ has discrete spectrum 
bounded from below and therefore the definition of the IDS makes sense. It turns out 
that the previous formula can be written in a purely algebraic way thanks to the Shubin 
formula [Bellissard (86), Shubin]: if represents the characteristic function of the set 
T, one gets

(14) 

where T represents the trace on yß which is extended to the von Neumann algebra 
generated by in the GNS representation of the trace. From this formula it follows 
that. / (E) is a non decreasing function of E which is constant on the gaps of H. Thus one 
way way of labelling the gaps is to affect to it the value of. I (E) for E in this gap. On the other 
hand whenever E belongs to a gap of H, x £](H) is actually a continuous and 
bounded function of H and therefore it belongs to and it is also a projection. By 
Shubin’s formula (14) the trace of this projection coincides with the value of the IDS on 
the gap. This trace actually depends only upon the equivalence class of the projection 
under unitary transformation. On the other hand is a separable C*Algebra and by 
standard results [Pedersen], the set of such equivalence classes is countable. Therefore 
the set of values obtained, by taking the traces of projections in is a countable subset of the positive 
real line. Is it possible to get a rule for its computation?

The answer is actually yes, and the Æ-theory is the key for it [Atiyah], For indeed ifP 
is a projection in A, let [P] be its equivalence class as defined by von Neumann, namely 
the set of projections P' such that there are 5 and Tin for which ST=P and TS=P'. 
One can check that ifP and Qare orthogonal projections, namely ifP£) = QP=0, their 
direct sum P©Q coincides with P+ Q and is still a projection in Moreover its class 
[P©<2J depends only upon the classes [P] and [Q] and can be denoted [P] + [QJ,defin­
ing on the set of classes an addition. This law is not always everywhere defined for it 
may happen that giving P and Q in there is not always a pair P’ e[P] and Q’e [Q] 
such that P'Q = (fP‘ = 0. However, if one enlarges the algebra by taking the C* Algebras 
^©.jff generated by finite rank matrices over one can show that this is always 
possible to define the sum of two arbitrary equivalence classes. Then by a canonical 
construction due to Grothendieck one extends this set into an abelian group, which is 
called Å^(^). If./^ is separable this group is countable.

The trace t(P) of a projection P in has the property that it depends only upon the
class [P]. Moreover, t(P©Q) = t(P) + t(Q). Therefore it extends into a group homo­
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morphism T*from Æ(^) into the real line. From which it follows that (i) the set of real 
numbers given by the traces of projections in is a generating subset of the countable 
subgroup T*of R, (ii) the gap labelling defined in this way satisfied sum rules 
since t*(Å1(^)) is a group. Thus (see [Bellissard (86)]):

Theorem 1 (first gap labelling theorem): If E belongs to gap of H, the IDS ./(E) 
belongs to the countable subgroup of R given by the image t*(K of the Æ0-group 
of under the trace homomorphism.

0

This theorem is actually useless as long as we cannot compute explicitly the Æ-group. 
This has been done for the first time for the rotation algebra by Pimsner and Voiculescu 
[Pimsner] using earlier results of M. Rieffel [Rieffel]:

Theorem 2: Is is the rotation algebra generated by two unitaries U and Vsuch that 
its Å5group is isomophic to Z2 and the image t*('Æq(^ )) of its Æ-group 

by the trace homomorphism is Z + EL. IfP is a projection in..^ there is a unique integer 
n such that r(P)-{na} where (x) denotes the fractional part ofx.

0

The last part of this theorem comes from the remark that since the trace on the rotation 
algebra is normalized the trace of a projection must belong to the inverval [0,1].

Soon after this result appeared, A. Connes gave a general formula for computing the 
X-group and its image under the trace homomorphism [Connes (82)]. We will not give 
it here in detail but we will only give the result one gets in the case of quasi periodic 
pseudodifferential operators [Bellissard (85a)]:

Theorem 3: Let H be a pseudodifferential operator on L2(RP) with quasiperiodic 
coefficients. Let Tv be the hull of its coefficients, and let /(x) = Ea ,x. be the correspond- 
ing homomorphism with dense image from Rz into Tv. If E belongs to a gap of H, the 
IDS .. / ’(E) belongs to the subgroup L ofR given by L=E Za(k) where the are the 
minors of maximal rank of the matrix If D = l, L coincides with the frequency 
module of the coefficients of H.

0

Theorem 4: Let H be a finite difference operator on with quasiperiodic coeffi­
cients. Let Tv be the hull of its coefficients, and letf(n)=E.a n. be the corresponding 
homomorphism with dense image from Zfl into Tv. If E belongs to a gap of H, the 
IDS. /(E) belongs to the subgroup L of R given by L=E(k) where the ^>’s are the 
minors of any rank of the matrix a including 1 as a minor of rank zero.
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If7)-7, £ coincides with Z + £ where Fis the frequency module of the coefficients of 
H.

0

Various applications of these gap labelling theorems can be found in [Bellissard (86)], 
especially in connection with the non existence of gaps. Indeed H will have a Cantor 
spectrum only if the subgroup r*(K()(. /)) is dense in R. Algebraic arguments show that 
there are examples for which this cannot happen.

In order to illustrate the power of this approach let us however give one example for 
which the Johnson-Moser argument could not work but the F-theory predicts the 
result. Consider the operator 77 on Z2(Z) defined by:

Hxp(n) = y(n+\) + tpfn-lj + f.iX(Qß](x-na)xp(n) (15)

It was shown in [Bellissard (82e)] that the values of the IDS on certain gaps did not 
follow the rules given by theorem 4 when a and ß were rationally independent. Thanks 
to a recent result of Putnam, Schmidt and Skau [Putnam (85)&(87)J it is possible to 
compute the X-group of the C*Algebra generated by the 77’s and one finds:

Proposition 1: Let H be given by (15) on Z2(Z) where 1, a and ß are rationally 
independent. If £ belongs to a gap of 77 , the IDS ./(E) belongs to the countable 
subgroup Z + Za+Z/3 of R.

0

111-3. Spectrum boundaries:

As we saw in §1-3, the measurement of the normal metal-superconductor transition 
curve for a network of superconductors in the temperature magnetic field parameters is 
equivalent to the measurement of the ground state of the Hofstadter spectrum as a 
function of the parameter a. This raises the question of computing the spectrum 
boundaries of a self-adjoint element of the rotation algebra . as a function of a. 
Unfortunately, the algebras . Z^and ./Z , are isomorphic if and only if a= ± a (mod. 1). 
Nevertheless there are many quantities of interest which are obviously continuous 
functions of this parameter. To overcome this difficulty, one can remark that the family 

T} is a continuous field ofC*Algebras in the sense of [Dixmier], To see this 
more precisely, let us define the universal rotation algebra . Z as the C*Algebra 
generated by three unitaries 77, V,X, such that:

[T7,Å] = 0 = [IjÅ] 77P = ÅF77 (16)
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This algebra is mapped onto . through the *homomorphism p^ defined by:

P„ (U) = U Pa (V) = V pa(k) = (17)

In much the same way to any closed subset J of [0,1], one associates the algebra .. A (J) 
obtained by restricting the elements of . A to J (the norm on . 7(J)satisfies ||X|| = 
suprtcJ|p^f4j||). The next theorem ofG. Elliott [Elliott] gives continuity properties with 
respect to tr:

Theorem 5: Let H belong to the universal rotation algebra. Then:
(i) If H=H* the gap boundaries of the spectrum of p«( H) are continuous functions of a.
(ii) The norm || p (7/)|| is a continuous function of a.

0

This theorem has been supplemented by a theorem of Avron and Simon [Avron (82)]: 
the spectrum of a Schrödinger operator describing a particle in a uniform magnetic 
field is continuous with respect to the magnetic field.

It turns out from numerical calculations that the gap boundaries are usually not 
smooth functions of a (see fig. 2). This has been recently proved by Bellissard (an­
nounced in [Bellissard (88b)] following semiclassical ideas developed by Wilkinson 
[Wilkinson (84a&b)] and Rammal et al. [Wang (87a&b)]. To see this we need further 
notations.

Let .>A(k, a) be a continuous function of the variables k = (k^k^e R and ae(—£, e) 
for some E>0. We assume that it satisfies the following properties:

(i) Æ is periodic with respect to k of period 2ji in each component of k.
(ii) If.>A=Z^z, h(m,a) eik m is its Fourier expansion (where kAm = k^m?-k^m^thcn 
either:

II .^|| = sup^^^^ (1 + |m|)A <oo for some £>2 (17a)

or the /z(m,o)’s are holomorphic in (Tin a strip of width r and

= /!m| <0° for some r>0 (17b)

(iii) For each a in (-£,£) the function k-> .7A(k,<r) has a unique regular minimum in 
each cell of period. Without loss of generality one can assume that this minimum is 
located at k = 0 for £E=0 and that ^(0,0) = 0.

Correspondingly we define the quantization of.77 as the following //element of. A:
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pa(H) = ZmeZ_, h(m,a) IT (m) IL(m) = v~>"2 (18)

The ground state energy E(a) is defined as the infimum of the spectrum otpfH) in. Z 
Our first result concerns the asymptotic behaviour of the bottom of the spectrum of 
Pa(H) as a—>0 namely:

Theorem 6: Let .77 satisfy (i), (ii), (iii) and let H be given by (18). Then there is 
£ > 0 and E < E depending only on .77 such that if ac (-E, sj the spectrum c7 pfH) 
below £ is contained in the union of the intervals £ = [£ (a) - 6(a), E (a) + öfer)] 
where if .7/ satisfies (17a) and <5 is equal to min(3,Å):

£/tr) = (<2« + l)2^|a| det1/2{l/2 D2.7^(0,0)} + ad.Z//da(0,0) + 0 (|a|d/2) (19)

0 < 0(a) < C’ I ap/2 (20)

Here C is a constant depending on .77.
If.TZsatisfies (3b), the estimate (7) is replaced by:

0 < 0(a) < Cj ec-a (21)

where C < r.
0

The proof of this result is a consequence of the semiclassical analysis by Briet-Combes- 
Duclos [Briet, Combes] and Helffcr-Sjöstrand | Hciffer (84)]. We then remark that if 
now a=plqeQ, p (H) can be computed by mean of the Floquet theory, and admits a 
band spectrum. If a is close to p/q, the algebra . Z can be seen as the subalgebra of 
M ®. 7 , generate by the elements:q a-p/q ° 1

V = IT®Va 2 a-p/q (22)

where W. and IT are qxq unitary matrices such that Wq - 1 and IT IT = e21T,llq IT I£. This 
is a kind of Renormalization Group analysis which was suggested by the work of 
Wilkinson [Wilkinson (84b)]. Then the limit a~>p/q can be analysed by using the 
theorem 6 and the functional calculus to reduce p (H) on one band of the spectrum. 
One gets the following result:

Theorem 7: Let.7Zsatisfy (i), (ii), (iii) above with dh(m,a)l da = 0, k > 3, and let B be a 
non degenerate band of H at a = p/q. The lower (resp. the upper) edge of the band E~ (a) 
(resp. E7 (a)) is given by the Wilkinson Rammal formula:
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E+ (a) = E+ (^) - (±) a \ a-^ \ + b (a-^) + O (\ |3/2) (23)

with:

2irq2
pf^^» b = W -'W nk)) }EA:^II (24)

O 
The first term in this formula is therefore the value of the energy at the band edge for 
a-p/q. The second represents a harmonic oscillator effect, and it produces a disconti­
nuity in the derivate. It shrinks the spectrum in such a way that the neighbouring gap 
actually increases in size due to this term. The last term comes from a Berry phase, 
namely from the fact that the eigenprojection P(k) at the value a=p/q defines in general 
a non trivial line bundle over the 2-torus [Berry, Simon (83)]. This last term accounts 
for an asymmetry of the derivate around a=p/q and may partially destroy the effect of 
the first one on the enlargement of the corresponding gap. The derivative of the 
magnetization of the superconducting array at the transition with respect to the 
temperature is actually a simple function of the asymmetry of the derivate at each 
rational point (see [Wang (87a)].

The previous theorem is established for an element H such that dh(m,a)/da=0. If 
there is m such that dh(m,a)/one gets an additional contribution to the second 
term which we will not give here but which is easy to compute.

One consequence of this formula is the following:

Corollary: Let E(a) be a gap boundary for He satisfying (i), (ii), (iii). For any 
irrational value of cr, E(a) is differentiable.

0
Open problem: Is it possible from this formula to get a proof that the spectrum of/7 is 
actually a Cantor set for any irrational O'?

Following the strategy of Wilkinson. Hclffer-Sjöstrand [Helffer (87)] gave more details 
in the case of Harper’s model, using special positivity properties ofits quantization, and 
their result is the content of the theorem 7 in §11-1.

To finish this section let us indicate that in the previous theorem 7 we used a new type 
of differential calculus similar to the Ito calculus in stochastic differential equations 
[Bellissard (88b)]. Namely let A be a polynomial in U, V, Å. One can expand T as 
follows:

Pa(A) = a(m;a) JT(m) with ^(m^) = (25)
meZ2



68 MfM 42:3

We define the operation d by the following formula:

Pa(dA) = 2
mcZ

da(nv.a)
da

IT(m) (26)

C'f. -Z) will denote the completion of the set of polynomials under the norm:

ll<, = ||A4||+||^.4||+P/I|+I|.4|I (27)

This operation satisfies the following rules:

Theorem 8: 1) If A and B belong to C’f.zZ):

d(AB) = dA B +AdB + i/An^Ad^B- d.Ad^B} (28)

2) If A belongs to C’f.-Z) and if it is invertible in . -Z, its inverse belongs to C1 (. Z) and 

d(A~') = -A_1{<M + i/4jt(d{A A~]d2A - d,A A^AJ} A’1 (29)
0

The formula (29) is actually the key point in proving (23) & (24) for ar close to p/q once 
they are proved for a small.

Centre de Physique Théorique and Université de Provence, 
CNRS, Luminy. Case 907, 13288, Marseille, Cedex 09. France.
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Notes added in proof:

Since the manuscript was written several problems mentioned in the text have been solved:
I. Let us consider the model described in §1-5 (eq. 19) with A = fl—cr, 1] and also in §11-1 (eq.5), §11-2 
(theorem 14) and given by the following hamiltonian on 1 2(Z-):

H(x,a) xp(n) = tp(n+\) + ip(n-A) + X(\-a,\](x-n<x) V(n)-

Its spectrum has been computed numerically by:
[128] Ostlundt, S., Kim, S. H.: Renormalization of Quasiperiodic Mappings, Physica Scripta, T9, (1985), 

193-198.
The fractal dimension of the spectrum has been studied non rigorously by:

[129] Levitov, L. S.: Renormalization group for a quasiperiodic Schrödinger operator, to appear in Europhys. 
Lett., (1988).
In a recent unpublished work, Bellissard, J., Iochum, B., Scoppola, E. & Testard, D., have studied 
rigorously this model and proved that:
(i) The spectrum of H(x,a) is independent of x for any cds.
(ii) If a is irrational and Å / 0 the spectrum of H(x,a) is a Cantor set.
(iii) The gap boundaries are continuous functions of a as long as a is irrational but they are

discontinuous at each rational value of a.
(iv) The spectral measure is purely singular continuous, no states are localized.
(v) The spectrum and the wave functions can be computed from the case a = 0 through a

renormalization map similar to the map of §11-1 (eq.7) leaving also the same function I(xy,z) 
invariant.

II. The nearest neighbours model on a Penrose lattice with or without a magnetic field has been numerically 
studied in:
[130] Tsunetsugu, H., Fujiwara, T., Ueda, K., Tokohiro, T.: Eigenstates in a 2-dimensional Penrose tiling, 

J. of Phys. Soc. Japan, 55, (1986), 1420-23.
[131] Hatakeyama, T., Kamimura, H.: Electronic properties of a Penrose tiling lattice in a magnetic field, 

Solid State Comm., 62, (1987), 79-83.
All these works exhibit evidence for Cantor spectrum.

III. Two recent works on the spectrum of the almost Mathieu equation (§11-1) have improved the result of 
theorem 5:
[132] Van Mouche, P.: The coexistence problem for the discrete Mathieu operator, to appear in Comm. Math. 

Phys., who proves that the dense G$ set in theorem 5 is actually independent of the coupling constant 
as long as it is not zero. And:

[133] Choi, M. D., Elliott, G., Yui, K.: Gauss polynomials and the rotation algebra, Preprint Swansea (1988) 
who give a wonderful proof that in the Harper equation (and also for the Almost Mathieu one if the 
coupling does not vanish) all the gaps which ought to be open are indeed open when a is rational; as a 
corollary they get an explicit dense set of irrational numbers for which the spectrum is a Cantor set.

IV. A one dimensional discrete Schrödinger operator with a quasiperiodic potential having two rationally 
independant frequencies has been studied rigorously by
[134] Sinai, Ya. G.: Anderson localization for the one dimensional difference Schrödinger operator with 

quasiperiodic potentials, Proc. Int. Congress Math. Phys. Marseille 1986, World Scientific, Singapore 
(1987), pp. 870-903.
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[135] Chulaevsky, V. A., Sinai, Ya. G.: Anderson localization for a ID discrete Schrödinger operator with 
two-frequency potentials, subm. to Comm. Math. Phys. (1988).
It is proved that provided the potential is given by a Morse C2 function on T3 and the coupling 
constant is small enough, there is a set of positive Lebesgue measure in [0, l]*2 such that for 
frequencies in that set, the corresponding Schrödinger operator has pure point spectrum with 
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Dissipative Weakly Almost Periodic Functions

B>’John F. Berglund

Using the Bochner-von Neumann [2] definition of the almost periodic functions on a 
group, Eberlein [4] analogously defined the weak almost periodic functions. He then 
proceeded to show that the set of weak almost periodic functions enjoys many of the 
properties of the set of almost periodic functions: e.g., that it is a uniformly closed linear 
space, indeed a C*-algebra, and, when the group is locally compact and abelian, it has 
an invariant mean and consists of uniformly continuous functions. Furthermore, all the 
functions “of interest” in harmonic analysis are weak almost periodic for a locally 
compact abelian group, at least; viz., the almost periodic functions, the functions 
vanishing at infinity, and the Fourier-Stieltjes transforms.

In his second paper on the subject, Eberlein [5] considered the formal Fourier scries

S < t, Å >
AeE

associated with a weak almost periodic function f defined on a locally compact abelian 
group G with dual group E, where, if M denotes the unique invariant mean on the set 
WAP(G) of weak almost periodic functions on G, then

/ = M[f(s) <-5,Å>J.

Unlike the case for almost periodic functions, the Fourier series is not uniquely 
associated with the weak almost periodic function f In fact, Eberlein showed that there 
is a unique decompositionf=f +f, where/ is almost periodic and has the same Fourier 
series as f and J? is weak almost periodic with M = 0. We are concerned with this 
latter type of function, which we call dissipative.

A more general view of weak almost periodic functions was introduced by de Leeuw 
and Glicksberg in [3]. The Bochner-von Neumann definition of almost periodic is as 
follows: Let /bea continuous bounded complex-valued function on the topological 
group G. Define/by/(7j = f(ts), teG, and define 0 (f) = {f^ 56G}.Then/is almost periodic 
if 0 (f) is relatively compact in the norm topology of C(G). Eberlein required that 0 (f) 
be relatively compact in the weak topology to get the weak almost periodic functions. 
Clearly, not all the properties of a topological group are required for these definitions to 
make sense; in particular, neither group inverses nor joint continuity of the multiplica­
tion is required. Therefore de Leeuw and Glicksberg defined weak almost periodic 
functions on semigroups with separately continuous multiplication. They then pro­
ceeded to define and exploit the weak almost periodic compactification (w , S1*) of a 
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scmitopological semigroup .S'; that is S'11 is a compact semitopological semigroup, 
Wy'S—is a continuous homomorphism, ws(S) is dense in S11 and if : S ■—> F is a 
continuous homomorphism into a compact scmitopological semigroup, then there is a 
continuous homomorphism t//11 : —^-7’such that

commutes. A function J is weak almost periodic on S’if and only if there is a continuous 
function fl]eC(Sli) such that f = f" °ws. Properties of the algebra of weak almost 
periodic functions are reflected as properties of the compactification. For example, 
IVAP(S) has an invariant mean if and only if S41 has a group as its minimal ideal K (Sli). 
The dissipative functions f arc, in that case, the ones for which/'n | .„ = 0.

I am not myself interested in the Fourier-Stieltjes aspect of this problem, but in the 
behavior of dissipative functions.

Writing out the support of Rudin’s function we have

supp (f) - (k!n\ 7 = 1, 2, 3, l</z<7)

= {1, 2, 4, 6, 12, 18, 24, 48, 72, 96, 120, 240, ....}

Note that there arc larger and larger gaps in this set of integers. How typical is this of 
dissipative weak almost periodic functions? At first glance, one must conclude that it is 
not very typical since every function vanishing at infinity is weak almost periodic and 
adding one such to /'will give us a weak almost periodic function with perhaps no gaps

Soon after Eberlcin’s original paper [4], a question arose as to whether there were 
any functions feWAP(G), where G is a locally compact abelian group, which were not 
uniform limits of Fourier-Stieltjes transforms of measures on F. Given the decomposi­
tion theorem, this amounts to the question of whether there are any dissipative 
functions on G which are not uniform limits of Fourier-Stieltjes transforms. In 1959, W. 
Rudin [7] gave an example of a dissipative function which cannot be approximated by 
Fourier-Stieltjes transforms. His example on the additive group Z of integers is the 
following:

I einlogn if m = k'n(k =1,2, 3, ..., 1 <n<k)
f(m) = I 0 otherwise.
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in its support. The following theorem shows that, taking into account the functions 
vanishing at infinity, the above pattern is typical.

Theorem. Let (G,+) be a locally compact (not necessarily abelian) topological group, 
and let S be a closed, noncompact subsemigroup of G. Suppose that has an
invariant mean and that addition is continuous at every point of SxS11. Then the 
following statements about a function fElAAP(S) are equivalent:

(a) 0 on the minimal ideal K(SW) of
(b) M(\f\) - 0, where M is the unique invariant mean on WAP(S).
(c) The zero function is in the weak closure of the orbit 0(f).
(d) For every E > 0 and every compact subset K of S, there is an element s E S such that

e > ll^7llA- = SUP (l/M'Ml : A: eÆ}.

This is Theorem 3.4 of [1], and the proof is given there.
Although dissipative functions f are such that \f\ has large gaps in its “above 6” 

support, these gaps cannot be arbitrarily far apart, as the following theorem from [1] 
shows:

Theorem. Let (G,+) be a locally compact topological group, and let .S' be a closed, 
noncompact, subsemigroup of G containing the identity 0. Suppose that WAP(S) has an 
invariant mean and that addition is continuous at every point ofSxS”. Suppose /"is a 
dissipative weak almost periodic function on .S'. Let UQ be a compact neighbourhood of 
the identity 0 of G and let 6 > 0. Then there is a compact neighbourhood K= V(U f, e) 
of 0 in G such that, for every s E S, there exists r E S such that

(V+s) n (U(] n 5+ r) 0

and

6 > II^A; = SUP <l/^+rJl : * e {70 Cl S).

(Loosely speaking, this says that no matter where Tis placed in S, it will intersect a set 
as big as UQ where |/| dips below e;that is, these spots are relatively dense in S.)

The above theorems give us some reasonable information on the behavior of dis­
sipative weak almost periodic functions, but a more desirable outcome would be an 
easily verified condition which would identify dissipative weak almost priodic functions 
among all bounded continuous complex-valued functions. Sufficient conditions were 
given by W. Rudin [7] and D. E. Ramirez [6], but they are far from necessary as has
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been shown by W. Ruppert [8]. Ruppert showed that functions f such as those 
produced by Rudin and Ramirez must vanish on [S41 fS'J]2. On the other hand,
dissipative functions need only vanish on K(Sj and, in general, ('S)]2 =# K(Sl]).
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On Maps which Preserve Almost Periodicity

By Pierre Eymard

If G is a topological group, let us denote by AP(G) the set of all almost periodic 
functions on G, i.e.

AP(G) = {f:G —> C; the set of translates f wherey G G, is relatively compact in

Definition. Let G and Gj be two topological groups. A map p: G^ G} is said to be almost 
periodicity preserving (a.p.p.) if, for every f 6 AP(G ), one has f 0 p 6 AP(G2).

In this lecture we shall see what exactly are the a.p.p. maps, under some particular 
hypothesis on the groups, and we shall give sketches of proofs in the two most classical 
cases: I) G = G = R; II) G2 = G{ = Z. These two examples are typical for the more 
general situation of connected groups, and discrete groups respectively. It turns out 
that the results are quite different in these two cases.

I. Case G, = G} — R
Examples of maps p: R —■» R which are a.p.p. are:

1°) the group homomorphisms p: x —> ax, where a is a real constant; 
2°) p = h, where h is a real-valued almost periodic function on R. 
Conversely one has the following:

Theorem 1: Ifp: R—» R is a.p.p., then there exists a cR and h e AP(R), such that p(x) — 
ax + h(x).

Generalization. Suppose G is an abelian locally compact connected group, and G) = R; the 
same statement remains true, just replacing ax by o(x), where cris any continuous group 
homomorphism of G2 into R. (Cf. [3]).

II. Case G2=G, = Z
Let there be given an integerp = 1, and for every i = 0, \,...,p-\, two integers a. and b.. For 
every x eZ, let us divide x by/?, obtaining x = pq + i, where q is the quotient and i the rest, 
and put

= “fl + b,-

Definition. Such a p: Z -» Z is called piecewise affine (of modulus p). 
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Theorem 2. p: Z —* Z is a.p.p. if and only if p is piecewise affine. (This result is 
implicitly in [2]).

III. Generalizations to discrete groups (Cf. [1])
Let G2 and G{ be two discrete groups, where is abelian, but not necessarily G2- Let us 
denote by ^(G ) the set of all subgroups of G which are invariant and of finite index.

Definition, p: G9 —♦ is said to be piecewise affine if there exists a subgroup H G .7(G ), 
some representatives xQ, Xp...,x of the classes of G^ modulo H, and for every i = 
0,1,...,/>-1:

1°) a group homomorphism o. = H —> G} ;
2°) a fixed b. 6 G,

such that:
x =_y X. , y G H => p (x) = o.(y) + £

Theorem 3. If G? is finitely generated, then p: G —» G is a.p.p. if and only if p is piecewise 
affine.

Theorem 4. If G2 is countable and without proper invariant subgroups of finite index, then p: 
G^ —> Gj is a.p.p. if and only if p(x) = o(x) + b, where O' is a group homomorphism of G2 
into Gp and b G G .

Example of a G2 such that .7(G) = {G2}: the group of all permutations ofN which act 
only on finitely many elements and are even on them; this group is countable and 
simple.

IV. Sketch of proof of the Theorem 1 (Cf. [3])
Let p: R —> R be a.p.p. The proof proceeds in 4 steps:

Step 1: p is uniformly continuous.
Step 2: there exists a constant Csuch that, for every x € R and y G R, |p (x+y) - p(x) — 

pWI c.
Step 3: there exists a continuous group homomorphism o: R —> R (i.e. a dilation x —> 

ax) and a map p : R —> R which is a.p.p. and bounded such that

p= (7+ ß.

Step 4: if p,- R —> R is a.p.p. and bounded, then p G T/3(R).
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The step 1 is quite natural. The step 4 is easy to prove, for instance passing through 
the Bohr compactification of R. We shall give proofs for steps 2 and 3.

Proof of Step 2: One can suppose p(0) = 0. Put f(x) = e'p(x> and E = (ieR; ||^.-Jr||00 = 0- 
Since f 6 AT’(R), there exists a compact interval K centered at 0, such that R = E + K. 
For every r 6 E, x g R,

^ei[p(r+r)-p(x)] _ j I <g j,

hence

pf+r)-pf) = m(T,x) + 2jikf,x) (1)

where \m(T,x)\ = ff, and k(r,x) eZ. But for fixed r, the first member of (1) is continu­

ous in x on R (connected); hence k(i,x) = k(z) does not depend on x. Notice that

q = sup{|pfc) - pf)\; x-j) 6 Æ} is < + 00,

because p is uniformly continuous and K is compact.
Now for any x G R,_y 6 R. choose i g E such that t-x G K. We have

\p(x+j>) - p(x) - pf)\
p(x+j>) - p(r+y)\ + \p(T+y) - pf) - [pf) - p(0)]| + |p(r) - p(x)\ 

= C) + + 2ji kf) - mf,(f - 2ti £(T)| + C)

2C] +

Proof of Step 3. Let M be a (Banach) invariant mean on Z3*?(R). According to Step 2, for 
every fixed j G R, the function x —> p(x + y) - p(x) is bounded continuous on R.We put:

of) = Mfp(xfy) - p(x)).

From the invariance property of the mean M results that of + z) — of) + o(z). Hence 
<7; R —> R is a homomorphism, continuous because p is uniformly continuous. 
Evidently p} = p - (Jis a.p.p., and px is bounded, since:

|p, f)\ = \pf) - of)\ = \pf) - ^fp(x+y) - p(x))\ =
= Mfpf) + p(x) - p(x + y)) C Mx(1) = C.
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V. Sketch of proof of Theorem 2
Let T be the set of z f C, |^| = 1. For every z € T, the function x zp(x> is almost 
periodic on Z; in particular: Vz f T, 9 an integer k > 0 such that sup | |
^1 * veZ

Applying the Baire theorem we see that:

3 an integer k > 0, 9 a set S CZ T, where 5 is open and not empty, A 
such that Vz eS, Vx eZ, |1 - p > j

Necessarily the sequence x —> p(x+k) — p(x) has only finite many values, because, if not, 
after H. Weyl, for a dense set of values ofz, the sequence x —> zp('+k> ~ p(x) should be dense 
in T; but this is not true for z € S because of (2).

Choose £ # " 1. The almost periodic function

v J p(x+k)-p(x)

takes only finitely many values; hence there exists q e Z. q > 0, such that x —> p(x+k) - 
p(x) is constant on every class of Z modulo q. Working a little more, we can conclude 
that p is piecewise affine.

VI. The crucial lemma for the proofs of Theorems 3 and 4. (Cf. [1]) 
In the proof for G = = Z we had the great simplification that every subgroup ¥= {e} of
G? = Z is automatically of finite index. Under the more general conditions of Theorems 
3 and 4, we need to prove directly that some subgroup of Gp which occurs in the proof, is 
in fact offinite index. For that purpose I proved the following lemma, which perhaps has 
its own interest:

Finiteness lemma: Let 5 = {n} < n < ... < nk < ...} be an increasing sequence of positive 
integers. Suppose that

i- v (n> nlim sup------> (J,n->» n

where v(n) is the number of integers = n in the sequence 5.
If £ > 0, let Z(e) = {z e T; for every nk e s, |1 - = e}.
Then there exists eq > 0, not depending on 5, such that Z(e) is finite for E = eq.
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VII. Interpretation in terms of Bohr compactification
If G is a topological group, there exists a compact group G and a continuous group 
homomorphism ß: G —> G,_such that ß(G) is dense in G, and such that: f € AP(G) <=> 
there exists f € 't(G) with f=f 0 ß-

Let G and G( be two locally compact groups, with 6^ abelian. Then a map p: G} —> G( 
is a.p.p. if and only if there exists a continuous map p: G —* C? such that the diagram

is commutative.
This interpretation gives curious consequences of the theorems above, concerning 

the analysis situs of groups in their Bohr compactification. For instance:
Corollary 1. Let Z = [(T)JA be the dual group of the discrete torus. If a continuous 

map of Z into Z carries Z into Z. then the restriction of this map to Z is piecewise affine.
Corollary 2. Let G? and be discrete groups, where is abelian, and G2 countable 

with G2 connected. If a map p: Gi? —> Gj such that p(e) = 0 can be extended to a 
continuous map from G2 into G, then necessarily p is a group homomorphism.

VIII. A problem
The hypothesis G abelian in Theorems 3 and 4 is not very aesthetic. To determine the 
a.p.p. maps of the free group with two generators into itself seems to me an interesting 
problem to attack now.
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Separated Solutions of Almost Periodic 
Differential Equations

By A. M. Fink

87

It is important to look for almost periodic solutions of differential equations since they 
tend to be the stable ones. In this paper I want to trace two threads of ideas which lead 
to almost periodic solutions of differential equations because of stability considerations. 
These two threads converge to give an elegant proof of Bohr's original theorem.

I recall Bohr’s original Theorem [1] explicitly. If F' (x) - f(x) and fis almost periodic, 
then Äis almost periodic if and only if F is bounded. This is a theorem about solutions of 
the differential equation y = f(x). Although the original theorem was for f complex 
valued, it holds equally well for f a complex vector function.

The Bohr-Neugebauer Theorem [2] is about the solutions of the equation x = Ax + 
f(t) where fis a vector valued almost periodic function and A is a constant matrix. 
Again a solution x is almost periodic if and only if it is bounded. I will sketch the proof. 
By a change of variable we may assume that the matrix A is in Jordan canonical form. 
Then we look at a particular block,

The last equation is of the form x' = Åx + f(t) with x a scalar. Proceeding up, the rest are 
of the form x = Åx + g(t) where x is a scalar, and g is a scalar almost periodic function.

If Re(Å) #= 0, then either

is a bounded solution which is verified to be almost periodic by an obvious estimate. 
Since it is the only bounded solution the theorem holds for this component. If Re(X) = 0, 
then all solutions are bounded and almost periodic if and only if the solution

\QeK(s~,)f(s)ds

is bounded and hence almost periodic by Bohr’s Theorem. Later we will give a different 
proof of this result to show how it fits in with other ideas. I remark here that this 
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Theorem also covers the nth order scalar equation. For this observation one needs to 
know that for such equations, the solution x being bounded is equivalent to the vector 
(x,x, x”, x(n~l)) being bounded.

The Jordan form splits the system into systems living in invariant subspaces. Those 
coming from RefÅ^I 0 exhibit the stability features. In those subspaces only one 
solution is bounded and almost periodic. The rest of the solutions are asymptotic 
(exponentially) to the almost periodic one either forward in time or backward in time. 
Equally important, they diverge exponentially either forward in time or backward in 
time. This situation is called an exponential dichotomy.

Favard attempted to generalize the above to the case when A is an almost periodic 
matrix. In order to describe his results elegantly we need to introduce some notation. 
For a real sequence 5 = s,...} we define Tf(t) — lirn /Jt + s.) whenever this limit exists 
pointwise. If the limit is to exist in another sense, we will specify each time. We use T to 
denote translation along the sequence 5.

The hull of an almost periodic function is the collection of functions g such that there 
is a sequence y for which g = T f uniformly. The hull is denoted by H(f) and is compact 
in C(—°°, 00) in the uniform norm. For any g € H(f) we have H(g) — H(f). Finally for 
sequences y and s, that s' is a subsequence of 5 is written as 5' CZ 5.

Along with the equation

x' = A(t)x+f(t) (1)

we also consider all equations in the non-homogeneous hull, namely all equations of the 
form

x = B(t)x + g(t) (2)

where B = 7\1 and g = T f uniformly, and all equations in the homogeneous hull

x = B(t)x. (3)

Favard’s Theorem [3] is that if for every equation (3) all bounded non-trivial solutions 
satisfy inf | x(t) | >0, and there is a bounded solution of (1), then each equation (2) has 
an almost periodic solution.

This theorem includes the Bohr-Neugebauer result since those solutions of x' = Ax 
which are bounded are almost periodic and therefore do not have zero infimum norm. A 
quick proof of this for almost periodic solutions of (3) can be given. If x(s' )—>0, then 
take 50' so that T B = C, T C = B, T x = y, T y = x all uniformly. It follows that y is aJ —s S s- J -S
solution of/ = Cy withy(0) = 0. Thusj = 0 and a fortiori x = 0. The simple equation y" + y 
=f(t) is an illustration. In phase space (y, y), the solutions of the homogeneous equation 
have constant norm, e.g. | (cos t, —sin t) | - 1.
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Favard’s proof is to show that every equation in the non-homogeneous hull has a 
unique solution with minimum norm and that this implies its almost periodicity. We 
will reproduce this proof below with a modern twist.

Meanwhile we will trace a different thread of ideas which converge with that of 
Favard. Doss [4] observed that Bohr's Theorem on the primitive of an almost periodic 
function may be rephrased in the following way. If/is almost periodic then it is easy to 
see that function F(t + h) - F(t) = ^hf(s)ds is bounded, continuous and almost periodic. 
Now the left hand side can be considered without reference to integrals or primitives. 
He proved then that if F is a bounded continuous function such that for every h the 
difference F(t + h) - F(t) is almost periodic, then Fis almost periodic. It is easy to see 
that if the hypothesis holds for a dense set of Fs and F is uniformly continuous then it 
holds for all h. A natural question arises, how many differences are required to be 
almost periodic for this theorem to hold?

Bochner [5] studied a general first order system which includes the possibility of 
delays and pure difference equations. He showed that if one non-trivial difference is 
almost periodic, and Fis bounded and uniformly continuous, then Fis almost periodic. 
In proving this theorem, Bochner derived a new necessary and sufficient condition for a 
function to be almost periodic. This condition is one which has become very useful in 
differential equations. The condition is: f\s almost periodic if it is continuous and if for 
every pair of sequences t' and /, there are common subsequences (the same choice 
function for both) t and 5 such that F F/ = /+// pointwise. The meaning of the left hand 
side is that T f - g and T g both exist. The usefulness of this criterion is that the 
condition is pointwise. Of course if/is almost periodic these hold uniformly.

If x is a bounded solution to a differential equation x' = f(t,x) where f is almost 
periodic in t uniformly for x in compact sets, then from every pair of sequences s' and t' 
one can extract subsequences so that T x = y, T(j>, and T/+s x all exist uniformly on 
compact subsets of R. By taking further subsequences if neccessary,jy will be a solution 
of the equation x = T f(t,x) and TTx and F/ x will both be solutions of the same 
almost periodic equation x = T f(t,x). To see how these ideas can be useful we will 
sketch the proof of Favard's Theorem. Recall that this proof will also prove Bohr’s 
original theorem about primitives being almost periodic if they are bounded.

Sketch of Proof: First, if the set of bounded solutions of equation (2) is non-empty, then 
this set is a convex set which has a unique element with minimum norm. This is an ar­
gument using the parallelogram identity. For two distinct minimizing solutions x and y 

1
2 +1 \y(t) I2- Since is a bounded solution of the

equation (3), the second term is larger than some 6 > 0. Taking supremums yields a 
contradiction. Call the minimum norm solution x(B,g) for (B,g) in the hull of (A,f). If 
F (A,f) —> (B,g) then by taking subsequences if necessary, F x(A,f) = y is a solution of
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(2) and ||j|| ||%pl,/)||. Now repeat the argument with the sequence -5. We get T_ y is a
solution of (1) and ||T j|| ||_y|| II- By uniqueness T y = x(A,f). It follows that
T x(A,f) = x(B,g), that is, the least norm solutions are translates of each other. Thus 
T T x(A,f) and T x(A,f) are both translates of a least norm solution and solutions of 
the same equation. By uniqueness they are the same and x(A,f) satisfies Bochner's 
condition; it is almost periodic.

The above argument can be made with any functional L defined on solutions of 
equations in the hull of any almost periodic equation provided that 1) each equation has 
a unique minimizer of the functional L and 2) L(T x) L(x) for any solution x. The 
book of Amerio and Prouse [6] consists of giving examples of weak solutions of partial 
differential equations which minimize energy functionals. The main difficulty is to 
prove the existence of a unique minimizer.

A different situation where the Bochner criterion gives an elegant proof of almost 
periodicity is the case of a unique bounded solution. Specifically, suppose we have a 
differential equation x —f\ft, x) such that for every equation in the hull, there is only one 
bounded solution. If x is such a solution, then T T.,x and T ox are both the bounded a p a+p
solution of x = f(t,x) so are equal and the Bochner criterion shows x is almost 
periodic. It would seem that such a situation is too much to hope for, except there are 
nice examples where this is true. Moreover, if one replaces the word “bounded”, by 
“with values in a compact set K”, then the same argument applies.

It is instructive to consider specifically Bohr’s original theorem for a real valued f. 
Suppose^' - f(x) has the bounded solution F(x). Then the function G(x) - F(x) — 
sup T + inf F

2 is the solution of the differential equation which is closest to zero in

C(-oo?oo)? ancl a = sup G - -inf G. Since it is uniformly continuous, for any sequence 
./there is an 5 CZ / such that TG is a solution of y' = -a inf TG, and sup TG a. If 
strict inequality held, then translation by -5 would give a solution of/ = f(x) whose 
norm is less than a. Consequently, for K = there is a unique solution of each 
equation y' = Tf with values in K and G is almost periodic by the above argument. I 
think this is a very elegant argument.

Solutions which are isolated in a technical sense are called separated; x and y are 
separated solutions if there is a number d such that \x(t) 5? d > 0 for all t. This is
the situation in Favard's Theorem. Amerio [7] generalized this to the non-linear case. 
The hypotheses need apply to all equations in the hull. Suppose that in some compact 
set K there are only finitely many solutions and that they are separated, then they are all 
almost periodic.

A property that implies the separated property is uniform stability. Uniform stability 
is a strong continuity with respect to initial conditions. A solution x is uniformly stable 
on [a, oo) if for a given £ > 0 there is a <5 > 0 such that iffy is a solution such that |x(L) - 
XOl < Ö, then \x(t) -yftjl < £for all Z /Q a. Uniform stability of a solution implies 
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that it is separated on intervals of the form (-°°, />]. If |x-j| (0) = £, then |x-j| (t) 
<5(e/2) for t < 0 else |x-j>| (0) < e/2. Iff is a sequence such that T.f=f and t' -^-oo, take 
a subsequence t CZ t' such that Tx and are solutions of x - f(t,x). Then | Tx-T y| 5= 
<5 (—) on the real line.

The various concepts of stability and the relationships with almost periodicity have 
been studied intensly by Seifert, Yoshizawa, Fink and others including researchers in 
the USSR. The book by Levitan and Zhikov [8] outlines these developments in the 
USSR, while Fink [9] discusses all of the above ideas. A more complete discussion of all 
aspects of stability and almost periodicity is given in Yoshizawa [10].

Some specific equations to which the above ideas apply can also be found in [9]. One 
of the more remarkable results is that of Frederickson and Laser [11], The equation x" + 
f(x) x' + x — p(t) with almost periodic/? has an almost periodic solution if and only if 
F(o°) — F(-oo) > nß where F(x) = and ß = max Af {p(t) sin (s-t)}. The solution is 
uniformly quasi-asymptotically stable in the large.

For scalar equations x =f(x,t), if there is a bounded uniformly stable solution on 
[O,00) then there is an almost periodic solution. Iffis monotone in x and there is a 
bounded solution on [0,°°) then there is an almost periodic solution. Each of these 
solutions is a unique solution contained in some compact set. The compact set is 
obtained by separation in the first case and by minimization of the oscillation function 
in the second.

A second order example is the equation x" = m(x)x + g(x) + e(t) where e is almost
periodic. Define M(x) = f',m and

M(u+v)-M(u) g(u+v)-g’(u)
(p(u,v) = v v 0, h(u,v) = ' 3------- v g --- V =F 0.

m(u) v = 0; . V = o.

If there is an a < b for which

g(a) + e(t) 0 g(b) + e(t) holds for all t, g (t) > 0,

and there is a A so that

((p(u,v) — A/ - 4Å (u, v) 0 for u, u + v 6 [a, £],

then there is an almost periodic solution. This is a unique solution with values in [a, b] 
and is stable.

A slightly different set of sufficient conditions is illustrated by the equation

x" +f(x) x + g(x) = kp(t)
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where/? is almost periodic. Let F(x) = g(0) = 0,/ exist and satisfy 0 <g' (x) < ßancl
f(x) crwhere ß < cd. Suppose one can find c < dso that g(c) =-k and g(d) - k and a< b 
such that k < min { [F(d) - F(c)]f(x) + g(-b), [F(-a) - F(-b]f(x) -g(d)} on [-b,d], then 
there is a unique bounded solution which is uniformly stable and almost periodic.

Finally, I mention that the notions of stability and separatedness have their counter­
parts in the abstract theory of dynamical systems. The use of dynamical systems for 
non-autonomous equations was inaugurated by Miller [12].

References

[1] Bohr, H. Fastperiodische Funktionen (1934). Springer Verlag.
[2] Bohr, H. and Neugebauer, O. Über lineare Differential-Gleichungen mit konstanten Koeffizienten 

und fastperiodischer rechter Seite. Nachr. Ges. Hass. Göttingen, Math.-Phys. Klasse (1926) 8-22. (Collected 
Works VII).

[3] Favard,J. Leqons sur les fonetions presque-périodiques. Gauthier-Villars, Paris 1933.
[4] Doss, R. On bounded functions with almost periodic differences. Proc. Am. Math. Soc. 12(1961) 

488-489.
[5] Bochner, S. A new approach to almost periodicity. Proc. Nat. Acad. Sei. U.S. 48(1962) 2039-2043.
[6] Amerio, L. and Prouse, G. Almost-periodic functions and functional equations. (The University Series in 

Higher Mathematics.) New York etc: Van Nostrand Reinhold Company 1971, VIII, 184.
[7] Amerio, L. Soluzioni quasi-periodiche, o limitate, di sistemi differenziali non lineari quasi-periodici, o 

limitati. Annali mat. pura ed api. 39(1955) 97-119.
[8] Levitan, B. M. and Zhikov, V. V. Almost periodic Functions and Differential Equations (1982), 

Cambridge Univ. Press.
[9] Fink, A. M. Almost Periodic Differential Equations (1974). Springer Verlag.

[10] Yoshizawa, T. Stability theory and the existence of periodic and almost periodic solutions, Appl-Math. 
Sei. Vol. 14, Springer-Verlag, NY, 1975.

[11] Frederickson, P. O., and Lazer, A. C. Necessary and Sufficient Damping in a Second-Order Oscillator. 
J. Diff. Eqs. 5(1969) 262-270.

[12] Miller, R. K. Almost periodic differential equations as dynamical systems with applications to the 
existence of almost periodic solutions,,/. Differential Equations 1(1965), 337-345.

Iowa State University
Ames, IA 50011 
U.S.A.



MfM 42:3 93

Value-distribution Theory for Holomorphic 
Almost Periodic Functions

By Sigurdur Helgason

1. Introduction
I am deeply indebted to the organizers for inviting me to participate in this conference 
on the occasion of the 100th anniversary of Harald Bohr.

My student years here in Copenhagen happened to coincide with the last 5 years of 
Bohr’s life. Although many years have passed I still have a vivid memory of his 
inspiring lectures and of his personal kindness.

Today I am going to talk about some work of my own from this time; this was a 
response to a prize question posed by the University for 1950 concerning holomorphic 
almost periodic functions. This work was inspired by papers by Bohr and by Jessen, 
together with the works of the Finnish mathematical school (primarily Rolf Nevanlinna 
and Lars Ahlfors) on value-distribution theory of meromorphic functions. The new 
results are described in §§ 4-5.

First I will describe some background material. Here I am indebted to Prof. B. 
Fuglede and Prof. H. Tornchave for some informative references. Bohr’s early work on 
Dirichlet series and the Riemann zeta-function led him to the theory of almost periodic 
functions. While the principal results of his theory of almost periodic functions on R 
have to some extent been absorbed in the theory of continuous functions on compact 
abelian groups, his theory of holomorphic almost periodic functions [2] has retained its 
independence and its charm.

A holomorphic function f(s) in a vertical strip (a, ft): a< Re 5 < ft is said to be almost 
periodic if to each 6 > 0 there exists a number I = 1(e) such that each interval Z()< t < t + I 
of length I contains a number T such that

-f(s) I < e

for all s in the strip. (Here trand ft are allowed to be infinite.) In other words, ify = <j + it, 
a < (J < ft, the function t f (o + it) is almost periodic on R and uniformly so for 
a < o < ft.

To each such function f one can associate its Dirichlet series

A eR,
n (1)
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which determines it uniquely. Here

(2)

where . is the mean value

For (jp almost periodic this limit does indeed exist and then the holomorphy of f 
implies that A is indeed independent of o. A uniformly convergent Dirichlet series (say 
g (s) = S(° e~^°sn)s for Re 5 > 1 + e) is almost periodic; on the other hand, to an almost 
periodic function f(s) in a strip can be associated a sequence f (s) of exponential 
polynomials S A^expfTV^jJ which converge to f(s) uniformly in any closed substrip 
fa < Re 5 < ß, where a < ctj < ß} < ß).

The original Dirichlet series

oo

1

a 
n 2 a e~^n)s 

n

were generalized to series of the form

SW A>v-
n

(3)

and both at the beginning and the end of his career Bohr investigated problems of 
convergence, summability etc. for such series (3). It is therefore worth stressing that in 
(1) the order of the exponents is unrestricted.

2. Result of Jessen. The Jensen Function
With the Riemann zeta-function as motivation it becomes a problem of interest to study 
the distribution of zeros of a function f(s) almost periodic in a strip (a, ß). For such 
functions f the basic general results were obtained by Jessen [6]. He showed the 
existence of the limit

Wf(°) = ./^(log |/fa + ?7J|) = lim -----
S-R^°° S-R

f Myr
J R

a+ it) I dt (1)
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(in spite of the fact that f may have zeros) and proved that it is a convex function of o. 
Jessen’s principal result is the following theorem. If a < a < ß' < ß let n(af ß‘; R,S) 
denote the number of zeros ofyin the rectangle a < o < ß‘, R < t < S counted with 
multiplicity.

Theorem 2.1. If is differentiable at a' and ß‘ then the density of zeros

H(a\ ß‘) = lim
S-R-*™

n(a, ß'; R, S)
S-R

exists and

H(a'’ = ~

If the function t—*f(o+it) has a fixed period p it turns out that this is equivalent to 
the classical Jensen formula in complex function theory; for this case the function <^is a 
piecewise linear function. Jessen called qfthe Jensen function for f

Indication of proof. First we assume that the boundary of the rectangle a < o < ß', 
R < t < S contains no zero off(s). Then by standard complex variable theory.

2x n(a', ß'; R, S) =

V R
f (a + it) f (o+ iR)v a

,f(a+iS)

Consider the vertical segments a + it (R t < S) and ß‘ + it (R — t < S). We can find a 
simply connected region ß containing both of these segments and no zeros for f We can 
then define the logarithm log/ft,) in Q, divide the relation above by S-R and let it tend 
to oo. We can restrict the R and S’ in such a way that the two last terms above give no 
contribution in the limit. The identity in Theorem 2.1 follows by taking real parts. The 
restriction on O''and ß' is then removed by a continuity argument.

It is now an interesting problem to characterize the convex functions cp(o) which 
arise as Jensen functions cp for suitable almost periodic f(s). This question was 
investigated by Buch [4] whose results imply for example that any convex function 
which is not linear on any interval arises in this fashion. A complete characterization of 
the (^.was given by Jessen and Tornehave [7], § 112. It implies for example that a convex 
function cp(o), a < o < ß, having infinitely many intervals of linearity in a compact 
subinterval of ((X, ß) cannot be a Jensen function cp if the slopes cp' (a) in these intervals 
are linearly independent over the rational numbers.
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3. Normal Almost Periodic Functions 
Already in his original paper [2] Bohr made a special investigation of almost periodic 
functions f(s) in a half-plane (-°°, ß) and expressed their behaviour near <7= -°o in 
terms of their Dirichlet expansion

0*0). (')
n

In [3] he singled out the so-called normal almost periodic functions f(s) for which among the 
nonzero exponents A the smallest one exists. These have the following property:

Given any a 6 C, there exists a half plane f—o ) which contains no a-point for f(s) (fe. a zero 
off(s) - A-

Let us for a moment view such a function f(s) via the substitution 5 = log z as a 
function <p(z) on a piece 0 < p < p{} of the Riemann surface of log z- The series (1) then 
becomes a generalized Laurent series

<p(z) ~ S A ZA" A #= 0. (2)

Let us for simplicity assume the normalizing property that the lowest nonzero expo­
nent, say Ais > 0. Bohr showed in [3] that the inverse function is also normal almost 
periodic. I have proved in [5] that a similar statement can be made about the 
composition of two normal almost periodic functions (having the above normalizing 
property).

4. Value-distribution Theory. The first Fundamental Theorem 
Consider a fixed ß < 00 and let z = f(s) be normal almost periodic in {—°°, ß} (that is 
normal almost periodic in any substrip (~K, ßß where ß{ < ß). We apply stereographic 
projection of the ^-plane C U (o°) onto the Riemann sphere S with diameter 1. 
tangential to the ^-plane at z = 0. Given 46CU {°°} the (chordal) distance of the 
corresponding points on S’ is given by

V(!+k,l2) d+k2l2)
so the arc-length element do on S' is

1^1do =
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For any a 6 C U {oo} let A„ denote the smallest exponent in the Dirichlet expansion of 
f(s) - a. (Here f(s) - oo is to be understood as \/f(s) which is also normal almost 
periodic). Let A denote the corresponding coefficient. We now introduce a quantity 
which measures how well the function f(s) approximates the value a on the line Re 5 — o.
Put

M(o,a) = ,/^{-log(k(f(cj+it), a))} + [log k(f(-^),a)], (1)

where the remainder term is

[log k(f(-<*>),a)] =

log k(f(-v>),a), f( 00 J a

= a ¥= oo

log L41 00
/f-ooj = a = oo.

The existence of the integral in (1) is clear from the existence of (1) § 2. Next we put 
n(o,a;R,S) = the number of a-points (with multiplicity) of f(s) in the rectangle 
-oo < T < o, R < t < S (with s - T + it).

N(o,a) = lim —- n(v,a;R,S) dr + n(-°°,a;-<x>,o°)a, (2)
S—R >°° kJ JI I —

where

7?(—°o ,ö,‘— oo ? oo) = Max(Afl,0).

The existence of the last limit is easily established by means of tools used in the proof of 
Theorem 2.1. The function N(o,a) is taken as a measure for the number of a-points off 
in the half-plane Re 5 < o. Note that the remainder term in (2) appears only if a = 
lim f(s).CJ—> — oo J ' 7

Theorem 4.1. Iff(s) is normal almost periodic in ß} then the sum

M(ø,a) + N(o,a) = T(o) (3)

is independent of a. Also 

T(o) = limS-R-»oo — 00
(4)
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where Ars(t) is the area of the Riemann surface s(f) over the Riemann sphere onto which the 
function f maps the rectangle -& < p < T, R < t < S.

The fact that the sum M(o, a) + N (o, a) is independent of a is an analog of 
Nevanlinna’s first fundamental theorem for meromorphic functions. It implies that if 
N(o,a) is small that is, iff(s) has few «-points, then the approximation term M(o,a) is 
large and vice-versa. The function T(o) is called the characteristic function. The geometric 
interpretation (4) of Ffcr) is an analog of a similar interpretation for the classical 
(periodic) case given by Ahlfors [1] and Shimizu [9],

The proof of Theorem 4.1 proceeds along lines similar to the classical theory 
(Nevanlinna [8], VI, § 3) but requires in addition some tools utilized in the proof of 
Theorem 2.1. A brief indication follows. Let A € C and put

w(s) = A +
1 v(s) = log(l + |rø(\)|2).

We use Gauss’ formula

(5)

on a region L2 which is the rectangle ct) < r < <7, R < t < S with small disks removed 
having the zeros off as the centers. Here Fis the boundary of Q (with the appropriate 
orientation), dl the arc element on F, A the Laplacian in the (T,t) variables and d!An the 
outgoing normal derivative.

The proof now proceeds along the following steps.
(i) We use the Laurent series of \/f(s) around each zero of f(s) to estimate the 

contributions to the left hand side of (5) of the circular parts of F. Then we let the radii 
of the disks considered tend to 0.

(ii) By direct computation

(Av)(s) = 4
(i+h(M2)2

Viewing w(s) as a map from the oplane to the Riemann sphere lying on the toplane we 
have
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Thus if X is the area function (for the function w(s)) we have (with 5 = T + it)

r r i»«i2

(iii) In (5) we divide by S~R and let S-R —* 00 through special values of Sand 7?, such 
that on the corresponding horizontal lines T + iR, t+ iS < r < o) f(s) is bounded 
away from 0. Then the horizontal pieces of the boundary Fin (5) give no contribution to 
the limit. The normal derivatives in (5) can be pulled outside the integral as dt do.

(iv) Now let crQ —■> - 00 in (5) and then integrate with respect to o from - so to <7. 
Considering the behaviour of w(s) as O'—» — 00 we obtain after some manipulation the 
formula

. (log \ l+|ze(oH-?7) |2) + N(o,Cf) —

2 o
= Ä W-los' •

(6)

The last term should be replaced by log(l/|A |) in case w(—00,) =
(v) Consider a fixed a € C and the function

l+ö/’fjJ _ 1
1 f(s)~a (f(s)-a) (1 + H )

The values ofte (s) are obtained from the values of/fc,) by rotation of the sphere so A is 
the same for w and for f. Also

(1 + lo^Jl2)-1 = k(wfs), 00; = k(f(s),d)

so when (6) is used on w we do obtain Theorem 4.1.

5. The Second Fundamental Theorem. Applications
While the first fundamental theorem expresses the constancy of the total affinity M(o,a) 
+ N(o,a) off(s) to the value a the second fundamental theorem will show that for most a

P
N(o,a) is the principal component. This is based on an estimate of the sum Sj M(o,aJ 
for arbitrary distinct a]5 ... a.
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Motivated by the classical (periodic) theory we consider the number n (o.a:R,S) of 
multiple roots in the equation f(s) - a = 0 in < T < o, R < t < S, such that a Å-fold 
root is only counted (k-\) times. We also put w^-00, a; — co, oo) = MaxfA\ 0/ where A^ 
is the smallest exponent in the expansion off'(s) - a. Clearly Ynfø, a; R, S) is the 
number of zeros for/" (5,) in the rectangle indicated. Then we put

n (r,a; R,S)dr + n(-<*y a;-°°y°)o (7)

and by the remark above, ZN (o,a) is bounded by the function A/o, O.ltakcn for the 
derivative f. In the next theorem (the analog of Nevanlinna’s second fundamental 
theorem) we distinguish between the two cases: ß finite and /?= °o.

Theorem 5.1. I. Let f(s) be normal almost periodic in {-00,00} and a}, ... ,a arbitrary distinct 
complex numbers. The inequality

t>
2 M(o, a ) + 2N(o,a) < T(o) + O(log T(ofi + O(log I al) v=l v a 1 (8)

holds for all o except on a set of o offinite measure.
II. Let f(s) be normal almost periodic in {—°°, 0} and a^ ... ,a^ any distinct complex numbers. Then 
inequality (8) holds with log|a| replaced by log( 11 (1 - ea)) and the inequality holds for all o < 0 
except for at set of o over which the integral of e° (l—e°)~{is finite.

In the proof of this theorem the passage from periodic functions to almost periodic 
functions gives rise to certain technical difficulties. The proofis therefore too complicat­
ed to describe here in detail. Instead, I will show how the theorem implies the analog of 
Nevanlinna’s defect relation.

Application. Letybe normal almost periodic in ß} 
defect by

For each a E C we define the

and the ramification index

In the case when fis a nonconstant normal almost periodic function in { —co} it is 
easily deduced from Theorem 4.1 that lim T(o)/o > 0. From Theorem 5.1 we can (7—>oo 
therefore deduce the following result.
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Theorem 5.2. Let f(s) be nonconstant and normal almost periodic in °°}. Then the defect 
ö(a) and the ramification index v(a) are strictly positive for at most countably many a and

Yd(a) + Yv(a) < 1.

The defect d(a) is a measure for how rarely f takes the value a. If a is omitted by f(s) 
altogether in-oo < Re5< 00 then d(a) = 1 so we deduce from 'ZÖ(a) < 1 that there can be 
at most one such value a.

For the case ß = 0 we obtain similarly the following result.

Theorem 5.3. Let f(s) be normal almost periodic in {—0} and assume

a->o T(o)

Then 

Yd(a) < 1.

Again this implies that f omits at most one value in the strip — oo < Re j < 0.
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Around Bohr’s thesis

By Jean-Pierre Kahane

Bohr’s thesis [2] deals with ordinary Dirichlet scries

00

É a n~s. (1)
I n ' '

I shall try to describe the mathematical context at the time when he wrote the thesis, 
1909, then - very shortly - his main results (from 1909 to 1951) and the problems he left 
open, then the role of series

f + (2)

and the present state of Bohr’s problems. Short proofs of classical things are given at the 
end.

1. Before 1909
One century ago, three days after Harald Bohr was born, J. L. W. V. Jensen, a telephone 
engineer from Copenhagen, presented a paper at the French Academy of Sciences, 
entitled “Sur la fonction £(s) de Riemann” [14]. H. Bohr quotes it in his first paper, in 
his thesis, and a number of times: obviously it has been a source of inspiration for him. 
When he evokes Jensen, he says he was “one of the most gifted mathematicians our 
country has ever produced”.

Jensen was interested i Dirichlet series. He introduced the basis formula

which allowed him to prove that, if a Dirichlet series S e~^‘s converges at a point (say, 
0), it converges uniformly on every compact set which lies strictly at the right [13]. His 
paper on £(s) was motivated by two reasons: first, give a simple proof, not using the 
functional equation of Riemann, that (ls)^(s) is an entire function; then, taking for 
granted what Stieltjes had claimed two years before [27] - namely that he had a proof of 
the Riemann hypothesis - investigate the location of the first zeros on the critical line.

Stieltjes was also interested in Dirichlet series. In order to derive from the Riemann 
hypothesis - which he thought he had proved - results on prime numbers he needed 
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multiplication ofDirichlet series. And he stated a curious result: that the product of two 
Dirichlet series

S a n ' , lb ns, n n

(namelv S c n~s with c = lab) converges for o > ~ if the two first converge for ' n n mp—n n p 2.
o> 1 [28].

In the last decade of the 19th century, Dirichlet series was an interesting topic. The 
main work was Cahen’s thesis, in France, with a number of formulas for the coeffi­
cients, the abscissa of convergence, etc. [8]. Also, with a wrong statement, namely 
that the theorem of Stieltjes on multiplication of Dirichlet series could be 

improved, replacing o > by o > 0 in the conclusion. Hadamard [9] and de la 

Vallee Poussin [29] proved that £(s) has no zero on o- 1 and derived the prime number 
theorem.

However, around 1900, there was a decline of interest for Dirichlet series, together 
with a renewal of interest for Fourier series, mainly because of the Lebesgue integral and 
the Fejer summation theorem.

Then, suddenly, at the time Harald Bohr began to work, a number of first class 
mathematicians turned again to Dirichlet series. In 1907 and 1908, there were several 
papers of Landau [17], [18], a short article by Hadamard [10], an extensive study by O. 
Perron [20], and the important thesis of Schnee [25], Landau published the first proof 
of Stieltjes’s statement and observed that Cahcn had been wrong on multiplication of 
Dirichlet series. Schnee, among other results, proved that a Dirichlet series converges 

00 ,

for Re 5 > <Jf| whenever the function f(s) = S ane exists for Re 5 large and can be 
extended as a function of order 0 in Re 5 > c^, that is

f(o+zt) = 0(|z|f) (<j> n0, |/| ^ °°)

for each 6 > 0 [25] [26].
In 1908 again, Lindelöf proved his famous convexity theorem about the order of a 

function. With Bohr’s notations, if we write

H(o) = inf (a - <9(|z|rt)}

when f(s) is holomorphic in the strip a < O< b (s - a+ it), then /i(o) is a convex function 
[19].

In 1909, Marcel Riesz published three important notes in Comptes-Rendus, all of 
them on Dirichlet series [22], [23], [24].
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2. Bohr's results and problems (1909-1950)
1909 is the year Harald Bohr writes his thesis. It begins with a note aux Comptes- 
Rendus, his first paper, 11th of January, 1909, “Sur la serie de Dirichlet” [1]. And the year 
ends with the approval of the thesis, signed by the dean on December 31,1909. In between, 
he writes also a paper for the Göttinger Nachrichten, on the summability of Dirichlet 
series, the topic of his first note [3]. His starting point is like this: the series S f-1/' n s, 
which represents tjs) fl-21 ~s), is summable by the Cesåro process of order r when o > 
-r, therefore represents an entire function (a still shorter proof than Jensen’s).

Actually, after 1909, his main interest shifted to the ^-function, then, after 1920, to 
the theory of almost periodic functions. Nevertheless, his last papers, around 1950, all 
deal with the problems he considered in his thesis [4], [5], [6], [7].

I shall review at the same time what he did in his thesis and the improvements he 
gave in the 1950’s.

A: The convergence problem
Let <7 be the abscissa of absolute convergence and o the abscissa of convergence of an 
ordinary Dirichlet series. Then

<7 <7 (7 + 1 and — 0 (obvious)

1 (Jensen)

ifo) = 0 => <7 =5 (7 (Schnee)

Is it possible to improve, that is, to obtain more information on o from the order 
function /z(.) or more information on //(.) from the abscissa of convergence <7? The 
answer is negative and it is provided by two examples: a lacunary series of the form

s +in (3)

gives figure 1, and a more complicated example figure 2.

-1
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Figure 2 answers the Stieltjes-Cahcn-Landau multiplication problems, because

= 2n(o ;f)

therefore, with f as in figure 2,

by Jensen. Bohr was very happy of this discovery and came back to the multiplication 
problem later [5] [6], Let me remark that

<- = 2,3,...,

a converse of an extended Stieltjes theorem (see appendix).
The conclusion of Bohr is that o is not very well connected with intrinsic properties of 

f(s), at least not with the order function Henry Helson reconsidered the question 
in 1962 and gave a very elegant fomula for <7, using Fourier properties of f(s)/s 
considered as a function of t (s = <7+ it) [11],

B: The summability theory
Given an ordinary Dirichlet series (1), let us write now

= abscissa of Cr-summability of (1)

where CT is the Cesåro process of summation of order r. In 1909, Bohr considers only 
integral values of r; in the 1950’s, following M. Riesz, general r > 0. The “summability 
function” is ip(o) defined by

V(\) = r,

that is, (1) is C”-summable at = o + it if r < ip(o) and is not (T-summable at any j = 
o + it such that r > ip((j). Bohr’s theory leads to

lp(o) =5 n(o) =5 lp(o) + 1 (4)

together with

t/t convex and tp(o) = 0 for large o 
ip'(cj-O) ^-1 or else ip(o) = 0 (5)
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(figure 3). As a consequence, the half plane where (1) is C'-summable for some r > 0 and 
the maximal half plane where the function yfy) represented by (1) is holomorphic and of 
bounded order are the same (up to the boundary), a striking and final result - actually, 
the best result of his thesis

However, Bohr was not satisfied. Given two functions l//(.) and as in figure 3, is it 
possible to construct an ordinary Dirichlet series having them as summability and 
order function respectively? In his last paper [7] Bohr solves the question completely as 
far as t/i(.) is concerned: (5) is necessary and sufficient for t//(.) to be a summability 
function. What about ^(.)? Assuming (4) and the analogue of (5) for //(.), that is //(.) is 
convex and

f%-o) ^-1 (6)

(where (O^ = inf {o ; fi(o) — 0}), then Bohr shows that { V'(-)? M(-)} ’s actually a couple 
{summability function, order function}.

Now, is (6) a necessary condition (when the first member exists)? This is the last 
problem of Harald Bohr [7].

Here is a previous problem [4]. Does there exist a Dirichlet series (1) with a = 0, <j = 
1, H(o) = sup(0,-- a) (figure 4)?

0 1
cr ac a

Fig-4
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Both questions are inspired by the Riemann ^-function. If (6) were a necessary 
condition, it would prove the Lindelöf hypothesis for £(s), that is 

00

for all E > 0. If the Lindelöf hypothesis is true, 2 (-1)" n s provides a positive answer to 
the second question.

3. After 1951 (a personal selection)
I already mentioned Helson’s formula for <7. Following the same idea - Fourier 
methods in Dirichlet series - Helson gave a very elegant proof of the prime number 
theorem [12].

Playing with + in series (2) gives interesting problems and results. I introduced the 
game in 1974 and it was developed by H. Queffelec [15] [21], The first interesting 
example is

(7)

with 6 — ftp E, ...) 6 (-1, 1}“ - Q. If we consider ß as a probability space with the 
natural probability, figure 4 holds almost surely, which solves the second-mentioned 
Bohr problem. If we consider Q as a topological space, then figure 2 holds quasi-surely 
(meaning: on a dense Gyset), which replaces a rather technical construction in Bohr’s 
thesis.

Instead of differences of the first order in (7) it is possible to consider differences of

(-00,00) (almost surely) or fi(o) = sup(0, 1—O') on (-00,00) (quasi-surely). That helps in 
constructing the “building blocks” from which Bohr’s theorem on {t//(.), £t(.)} derives 
(see [21] and [16]).

Quite different results are obtained by Queffelec [21] for almost sure and quasi sure 
properties of Euler products

General random Dirichlet series
00

and their growth properties are considered by Yu jia-rong [30].
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The Harald Bohr centenary was a good opportunity to investigate the last problem, 
on the order functions o) of ordinary Dirichlet series. Here are the results I obtained:

1) a necessary condition is fi(o+ fi(°) + -) = 0.
2) (6) is not necessary. It is possible to have p (cofi~ 0? as near - as one wants [16].
Therefore, the last problem splits into two parts:
1) find another approach to the Lindelöf hypothesis,
2) characterize the order functions of ordinary Dirichlet series. For example, for 

which a > 0 can one have

fi(o) - sup(0,-- o, a(\-a)y>

(cr 2 is necessary, a = 0 is sufficient).

4. Appendix
1. Here is the proof of Stieltjes’s theorem on mulitplication of Dirichlet series. We 
consider 2 a n~s, S b n~s and their product S c n~s. Assume that S a and S b converge. 

n n 1 n n n
Given N,

Sc = S a b
1 n (m,p):mp^N m P

= E (am S bp + S (b? S a.p 
X&n^'N X^p^N/m ? X^p^^N JV<m^N/p

= 0 (\N),

hence S c n~° converges for o > - QED.
In the same way, given k series 2 <r'n~s (j - 1, 2, ... k) which converge for 5 = 0, their 

product is a Dirichlet series which converges for o > 1 — -
K

2. I mentioned the beautiful arguments of Jensen and Bohr proving that fl -s)^(s) is 
an entire function. However the classical proof is the Rieman functional equation. Here 
is a simple way to express the proof of the functional equation. Let E(x) = integral part 
of x for x > 0, E(—x) = E(x). Then

t(s) = Jo x~s d(E(x)-x)

for 0 < Re s < 1 and

d(E(x) - x) = £ d(E(l) - I) 
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in the sense of Schwartz. Through a simple regularisation (multiplying x s by a 
C^-function with compact support in JO, 00 [) we have

t(s) = Jo (£ +
d(E(t)-t) = C(s) £(\-s)

with C(s) = 2 J^° x 5 cos 2jix dx.
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In this note we define the space BAP( G) of Bohr almost periodic functions on a locally 
compact group G and, after reviewing the basic implications of the definition, discuss 
examples of functions that are Bohr almost periodic, but not almost periodic in the 
sense of Bochner. These examples are either due to or inspired by T.-S. Wu. We then 
consider dynamical properties of BAP(G), showing among other things that BAP(G) 
(Z MIN(G), the space of minimal functions on G. We also mention some pathologies; 
for example, BAP(G) need not be a linear space. A concluding result, which we quote, is 
due to A. L. T. Paterson and may be thought of as a regularity property of BAP(G). It 
asserts that BAP(G) consists of left almost convergent functions.

A way to view one aspect of Harald Bohr’s achievement with his theory of almost 
periodic functions is that he provided a characterization of the norm closed, linear span 
of the continuous periodic functions on R. It is clear that any attempt to characterize 
this space must overcome the apparent problem that even the sum of two periodic 
functions is usually not periodic, e.g., x —> sin x + sin (\ 2x). Earlier attempts at some 
aspects of such a characterization had been made by Bohl [3] and Esclangon [6].

Bohr defined a continuous complex-valued function f on R to be almost periodic if: 
for any 6 > 0, there is a real number L(e) > 0 such that every interval of length L(e) 
contains at least one translation number of/corresponding to 6. (See Bohr [4; pp. 31-2], 
for example. [5] has an extensive bibliography.) We write this in symbols:

for any 6 > 0, there is a real number > 0 such that [r, r + Å ] f| {.v | \f(t + s)-f(t))\ < 6 
for all / e R } 0 (reR). The rationale for the term “almost periodic” is obvious; if the 
real number > 0 exists for 6 = 0, then/"is periodic. Also obvious is how to generalize 
the setting.

Definition 1. A continuous complex-valued function/on a locally compact group G is 
called Bohr almost periodic if:

for any 6 > 0 there is a compact K( CZ G such that

(rKfi A {y 6 G | \f(ts) -f(t)\ < 6 for all t e G} =£ 0 (r e G). (1) 
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Let BAP (G) denote the class of Bohr almost periodic functions on G.
Although the definition does not require f 6 BAP(G) to be bounded, it does require

ll^/Vll : = sup |(R/-/M = sup \f(ts)-f(t)\ < g
teG leG

for many s G G. Also, since {5 | || R^-/|| < e} is a symmetric set, (1) is equivalent to

K {a e G I ||Ä/Vll < e } = G, (1')

and to

for each t 6 G, there is a k g such that < e- (1")

Since a function in BAP (S) must in fact be bounded, the formulation (1") shows that 
the compact sets K can always be chosen finite if and only if the orbit Rcf'-~ {Æ/J s G G} 
is totally bounded, i.e.,/is almost periodic in the sense ofBochner [2]. Thus, denoting 
by AP(G) the class ofBochner almost periodic functions, we note that BAP(G) = AP(G) 
if G is discrete.

2. Here are some facts about BAP(G). Their demonstration can usually be modelled on 
proofs in Bohr [4]; see also [8, 1]. ([10] is a standard reference for topological groups.)
(a) The functions in BAP(G) are bounded (as mentioned above) and right uniformly 

continuous. (We write BAP(G) CZ 22^(G)', a function f: G —> C is right uniformly 
continuous if, for all 6 > 0, there is a neighbourhood V of the identity e G G such that 
I f(s) -f(t)\ < G whenever st 1 G V)

(b) BAP(G) is norm closed in 22(G) and translation invariant (i.e.,/GBAP(G) and s G G 
imply Rf Lf G BAP(G), where Lf(t) =f(st)).

(c) BAP(G) f| 22f(G) = AP(G). (Here 22{(G) is the analogously defined space of 
bounded functions that are left uniformly continuous.)

From (a) and (c) it follows that BAP(G) = AP(G) if 22f G) = 22f G) (for example, if G is 
abelian). The converse is an open question. A group to look at in this connection is the 
affine group of the line R 0 R+, for which we suspect BAP — AP, although // =# 22..

The definition of-fiTTfC) uses right translates. We denote by LBAP(G) the space 
defined analogously using left translates. It follows that LBAP CZ 22? that LBAP A BAP 
= AP, and that the equality LBAP = BAP implies the identity of all three spaces, LBAP = 
BAP = AP.

Examples 3. The examples presented here of functions in BAP\AP are due to or inspired 
by Wu [17]. A more detailed treatment of them can be found in [12, 13, 14],
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(i) On G = C ®T, the euclidean group of the plane with multiplication (z\ w') (z, w) = 
(z + w'z,w'w), the functionf(z,w) ~ e'™(z w) is in BAP\%, as is readily verified. (Here 
Re indicates real part.)
(ii) On G =(T xT)®Z with multiplication (zcj, w', n) (w , w ,n) = (w'pv}u^,iuw2, 
n+n), the function f(wx,w2,n) = w} satisfies R x 1 /=/for all m eZ. Hence f 6 BAP(G), 
since we can choose K( = T x T x {0} for all e > 0 in Definition 1. However ft £6? (This 
is Wu’s method [17] and works more generally: if G = G ® G is a semidirect product 
with GJ compact, and if F € C(G}), then f(s,t) = F (s) defines an f € BAP(G).)
(iii) Let G = Tt ®T/? where Tt is the compact group of all functions from T into T 
and T is the discrete circle group. The product in G is (h' ,w) (h, w) = (h'R^.h, ww). Let 
f (h, w) = h(\). Then f e BAP\^{. Further, define g e Tt by g(~A) = -1, g(ip) = 1 
otherwise. Then, by 2(b), R })f 6 BAP. Howeverf + 7?^ é BAP.

We now want to make a connection with topological dynamics. If/6 (G), then the 
closure X : = RQf~ of the orbit 7//in the topology of pointwise convergence on G is 
compact in JMf(G) for that topology. The translation operators Rf,t € G, leave X 
invariant and (R(.,X) is a flow./is called minimal, point distal or distal if that flow is 
minimal, point distal with/ as distal point, or distal, respectively. Specifically, an 
/e y/G? is:

minimal if, whenever h — lim R f (pointwise on G), there is a net {/„} CZZ G such that 
1 a P

/=lim R h;
ß ‘n

point distal if, whenever h = lim R /and lim R h = h' = lim R f, it follows necessarily1 a ■’a ß 'ß 1 ß 7<
that / =/;
or

distal if, whenever h = lim R f h - lim R f and lim R h=h' = lim R h , it follows 1 (X * ß ‘0 Y ry 1 Y rY Z
necessarily that Æ = h,.

We denote the classes of minimal, point distal and distal functions on G by MIN( G), 
PD(G) and D(G), respectively. Clearly distal functions are point distal, and point 
distal functions are minimal [7, 11, 1]. The functions in Examples 3, (i) and (ii), are 
distal, but the one in (iii) is in A1IN(G)\PD (G). (A function/that is in 7’7)(Z)\(D(Z) U 
BAP(Z),) is defined by f(n) = cos z?/|cos n|.)

We quote two theorems.

Theorem 4 [7,11]. Let/6 i%r(G). Then/ € MIN(G) if and only if:
Tor all 6 > 0 and finite F CZ G, there is a finite

(*) < 7/^.Cz: G such that
XT e G| IjW< e for all I e F} = G.

Theorem 5 [14]. BAP(G) CZ M1N(G).
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The condition (*) in Theorem 4 looks similar to the (1') formulation of the definition of 
Bohr almost periodicity; indeed, one can show directly that a Bohr almost periodic 
function satisfies (*). The proof of Theorem 5 given in [14] shows that, if/e BAP(G), 
h c X and 6 > 0, then there is a I 6 G such that

\\Kli -/II 5 e

(which proves f 6 df/A/Gj).

Remarks 6. (i) (**) is equivalent to || h - A//|| — 6, from which we conclude that, for an 
/ € BAP(G), X, which is the pointwisc closure R(.f, equals the norm closure of R(.f 
wc write

V-" = V1"' <>)

It follows from 2(b) that A7 CZ BAP(G).
(ii) Clearly an/6 'A?(G') that satisfies (1) is in MIN(G). However, not all minimal 
functions f satisfy (1). A class of minimal functions that do not satisfy (1) is PD(G) 
\D(G), hence BAP f] PG = BAP A D.
(iii) Suppose an/e //satisfies (1). Does this always imply/c BAP? Not without some 
connectivity hypothesis. For, suppose f € BAP\AP on some group G. Then some of the 
Å/s in Definition 1 cannot be chosen finite, hence/is not Bohr almost periodic on the 
discrete group G^. But (1) still holds for/on G .

In Example 3 (iii) wc pointed out that BAP(G) need not form a linear space. Here are 
two more unusual aspects of/MF/G/
(a) If G satisfies BAP\AP 0, consider the identity map i : G —> G. Although i is a 

continuous homomorphism, the adjoint map z*. i*(f) does not map BAP(G) 
into BAP(Gd). (Of course, z* (AP(G)) CZ AP(Gd), etc.)

(b) Let G and/be as in Example 3 (iii). Then mry T-valucd function h on the sub­
group {1} x Ty extends to a function R(hX)f f BAP(G). (Note that, if// is a 
subgroup of a group H and/ € AP(H), for example, then the restriction of/to H is 
in A////).)

Wc quote two more theorems.

Theorem 7 [14], Let ip be a continuous open homomorphism of G] onto G^. Then 
ip*(BAP(G2)) ci BAP(G}).

Theorem 8 (A. L. T. Paterson). Let G be an amenable locally compact group. Then 
each/6 BAP(G) is left almost convergent.
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We refer the reader to [9, 15, 16] for amenability. A function f e (G) is left almost 
convergent if the set

{[1(f) I [1 is left invariant mean on M (G)}

is a singleton. Paterson proved Theorem 8 by showing that an f € BAP(G) has a 
constant function in its norm closed convex hull.

In conclusion we remark that one can consider Bohr almost periodic functions on 
topological groups that are not locally compact. All the results here go through 
unchanged in this more general setting. One can even extend the setting to semi- 
topological groups; in this setting a.nf e BAP(G) is defined to satisfy the condition of 
Definition 1 and also to be in (G).
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Almost-Periodic Solutions of Navier-Stokes Equations 
and Inequalities

By Giovanni Prouse

Introduction
In this talk I would like to present some results, old and new, concerning almost- 
periodic solutions of Navier-Stokes equations and inequalities, which govern the 
motion of viscous compressible or incompressible fluids (respectively gases or liquids).

Of the various problems which can be associated with this motion I shall, in what 
follows, for the sake of simplicity, consider only the one corresponding to a fluid in a 
bounded 2- or 3-dimensional domain ß, which boundary T constituted by a material 
surface. Denoting by u (x,t) x, E £2) the velocity of the fluid, the problem
indicated above corresponds, by the limit layer theory, to the homogeneous Dirichlet 
boundary condition

ü (x,t) = 0 (x 6 r). (1.1)

The following notations will be used in the sequel.
f(x,t) external force acting on the fluid;
p(x,t) pressure;
Q(x,t) density; in the incompressible case (p = const) I shall assume, for simplicity, 

p= 1;
viscosity coefficients (resp. shear and bulk viscosity);

& space of functions (or vectors) e C°°(Q) and with compact support in ß, 
.T space of vectors v € ^and such that div v = 0;
Ff (s integer 0) space of functions (or vectors) square summable in ß, together 

with their derivatives (in the sense of distributions) of order 5;
Ns closure of ./f in/7*.

The most common mathematical model associated to the motion of a viscous fluid is 
constituted by the Navier-Stokes equations which, in the case of incompressible fluids, take 
the form

—- (lAu + (w.grad) u + grad p=f 
dt

div u = 0.
(1-2)

while, if the fluid is compressible, are expressed by



120 MfM 42:3

. dw 1
Q ~ + (t + ~/J.) grad div w - pAu + Q (w.grad) u + grad p = pf 

dg
+ div (W = 0 

\p=P(Q)-

(1-3)

The third equation of (1.3) is an equation of state which, in most practical cases, is given 
by p = k(f (k, y > 0).

It should be noted that (1.2) cannot be considered as a special case of (1.3), since the 
two systems are essentially different.

Another model associated to viscous incompressible flow corresponds to the Navier- 
Stokes inequalities which are introduced as follows. Observing that the Navier-Stokes 
equations are non-relativistic and, consequently, do not have any physical meaning 
when |w| approaches the velocity of light, the model (1.2) is equivalent, from a physical 
point of view, to the one corresponding to the relationships

— ia.Au + (T.grad) u + grad p = f where |w| < c

div u = 0 , \u\ c
u continuous at the “interfaces” of the two sets in which resp. |w| < c and |w| = c.

It is well known, on the other hand, from the theory of differential inequalities (see, for 
instance, Lions [1]) that (1.4) is equivalent to the system

£, jß \dt~ + (“-gracV " + grad P -// (u - (p) dt dQ 0.

div u - 0 (1.5)

K <p such that |<p| c and V f t € (—°°, +°°).
System (1.5) therefore constitutes an inequality model for the problem considered, in 

the incompressible case. An analogous model could obviously be given for compres­
sible fluids, but it will not be considered here.

In the next section I shall recall some results concerning the almost-periodic solu­
tions of the three models presented; it is however useful to first briefly summarize the 
main existence and uniqueness theorems ofa solution of (1.2), (1.3), (1.5) satisfying (1.1) 
and the initial conditions

u(x, 0) = ufx)
u(x, 0) = uQ(x) , p(x, 0) = pQ(x) 

(incompressible case)
(compressible case)
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These theorems represent, in fact, the first step in the study of the almost-periodic 
solutions.

The solutions will always be intended in the sense of distributions, while I shall not, 
for the sake of simplicity, indicated explicitly the functional spaces in which the 
solutions are found, or the assumptions on the data.

Considering system (1.2), Hopf [2] proved the global (intime) existence of a solution 
in any space dimension; the uniqueness of such a solution can however be guaranteed 
only in 2 dimensions (Lions and Prodi [3]). An existence and uniqueness theorem in Q 
x T), £2 3-dimensional, holds provided f is “sufficiently small'’ (Kieselev and 
Ladyzenskaja [4]).

One can, on the other hand, prove a global existence and uniqueness theorem for the 
solution in ß x fO, T) of (1.5) (Prouse [5]).

In the compressible case, only a local existence and uniqueness theorem holds (Valli 
[6]); in order to obtain global existence and uniqueness, one must assume that /is 
“sufficiently small” (Marcati and Valli [7]).

Almost-periodicity theorems
The models introduced in the preceding section all correspond to dissipative problems, 
and the study of their almost-periodic solutions follows therefore from the guidelines 
given, for ordinary dissipative differential equations, by Favard [8] and Amerio [9] 
respectively in the linear and non linear case.

In the theory of almost-periodic solutions of partial differential equations, vector 
valued functions play an essential role, together with the concepts of weakly almost- 
periodic and S^-Stepanov almost-periodic functions. For these concepts and for the 
basic definitions and properties of functions with values in a Banach space, I refer to the 
note by L. Amerio which appears in the present volume (see also Amerio, Prouse [10]).

While the details of the proofs of the existence and uniqueness of an almost-periodic 
solution, under the assumption that f(t) is almost-periodic, are obviously different for 
the three models considered, the basic scheme is similar and consists essentially of the 
following steps:
a) A global existence theorem in +°°J;
b) An existence and uniqueness theorem of a solution u( t) (or {ü(t), Q(t)}) bounded 

on J = (—°°, +00) (assuming//) bounded on /);
c) The proof that ü(t) {{ü(t), Q (/)}) is weakly almost-periodic iff(t) is weakly 

almost-periodic;
d) The proof that the range of ü(t) ({ü(t), Q /)}) is relatively compact 'tff(t) is 

almost-periodic.
Observe that point a) corresponds essentially to the results recalled in the preceding 

section, setting T = +00.
Assuming that f(t) is S1-Stepanov almost-periodic, the following theorems then hold.
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Theorem I (Prouse [11]): If £2 is 2-dimensional, f(t) elf (J;L2) and is “sufficiently small”, 
(1.1), (1.2) admit a unique solution ü(t) which is N° -Bohr and N{-S~-Stepanov almost-periodic.

Theorem II (Foias [12], Heywood [13]): If £2 is 3-dimensional and of class C\f(t) e 
I? (J,NX) A H1 (J, (Nx)*) andis “sufficiently small”, then (1.1), (1.2) admit aunique solution 
ü(t) which is Ar -Bohr and N -S -Stepanov almost-periodic.

Theorem III (Marcati and Valli [7]): If £2 is 3-dimensional and of class C\p e C3, p' > 0, 
f(t) 6 Z,2 (J;HX) A H) (J;and is “sufficiently small”, then (1.1), (1-3) admit a unique 
solution (u(t), Q (t)} with ü(t) H -Bohr and H -S -Stepanov almost-periodic, Q(t) L-Bohr and 
H2-S2-Stepanov almost-periodic.

Theorem IV (Prouse [14]): If £2 is 3-dimensional,f(t) eLf (J;L2) andis “sufficiently small”, 
then (1.1), (1.4) admit aunique solution ü(t) which is N®-Bohr and Nx-S2-Stepanov almost-periodic.
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On the Zeros of Entire Almost Periodic Functions

By Hans Tornehave

We shal prove in this paper that a lattice ßcC which is the set of zeros of an entire 
almost periodic function/; C —» C is periodic in the direction of almost periodicity.

A method for construction of holomorphic almost periodic functions was introduced 
in [4] and was applied more extensively in [6]. During the work on [6] the authors 
noticed that the method failed if the set of zeros was a lattice and not periodic in the 
direction of almost periodicity. The authors discussed it only briefly and it was not 
mentioned in the paper.

A rotation of both the lattice and the direction of almost periodicity around the point 
0 and by the same angle will have no influence on the existence of almost periodic entire 
functions with the given lattice as set of zeros.

Accordingly, we shall assume that the given direction of almost periodicity is the 
direction of the real axis and that the lattice ß is not periodic in this direction, i.e. that 0 
is the only real number in Q. We shall study a hypothetical entire almost periodic 
function f: C —-> C with/-'(0) = ß. We are going to prove the non existence of such a 
function by deducing that some function derived from / will have properties which 
contradict each other.

The 8 lemmas of this paper arc statements directly or indirectly dealing with the non 
existing function/ Hence, they have no applications whatever beyond the scope of this 
paper. The 7 propositions are genuine statements about rather general classes of 
functions, but most of them are reformulations of known results adopted for our 
particular purpose.

The first section states the problem, introduces some notions and does some prelimi­
nary work. It ends with the key lemmas 2 and 3, which state that/and some related 
functions cannot assume very small values except near the zeros.

The second section investigates the Fourier series of/ It turns out that the 2- 
dimensionality of the lattice of zeros is reflected in the set of Fourier exponents. In fact 
the subspace of the Q-vector space R generated by the set of Fourier exponents has a 
‘compulsory’ 2-dimensional subspace determined by ß.

In the third section we introduce the spatial extension of/ i.e. a function F: R xR 
—> C with/(z) = z - a + iy. Here, Fis limit periodic and y = (yi? y?, ...) is a base
for the vector space generated by the Fourier exponents such that (y, y) spans the 
compulsory subspace. If Al denotes the zeros of F in the (x, x2;jp)-subspace of R x R, 
we have F-l(0) = p~x (A/ when p: Rx x R -> R2 x R is the projection. Further, M is a 
system of parallel straight lines, each connecting a point of ß placed in R J' x R by/(/ 
= F(yx; j) and projected on the subspace, with a point of the unit lattice in the 
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(jtp x2)-plane. The proof of this is the tiresome part of the paper and the author hopes 
that somebody will find a more elegant way of doing it.

The fourth section finishes the proof of the non existence of f by a topological 
argument. We know that /Tas the variation of its argument around each zero equal to 
2jt. 11 is possible to let small circles around the zeros off slide along the lines of M to end 
in the (Xp x2)-plane and this enables us to prove that also the restriction <p(Xp x2) = F(Xp 
x , 0, 0, ..., 0) by convenient orientation of the (Xp x2)-plane has the variation of the 
argument around each zero equal to 2jt. The lemmas 2 and 3 will also carry over and 
that makes it possible to prove that the variation of the argument of F along the 
boundaries of certain big squares has to be zero and also to be a very large number and 
that is the contradiction.

In the fifth and last section we shall prove that there is a lattice 42' CZ C and a second 
order entire almost periodic function with Q U Q' as its set of zeros.

Almost periodic properties of the function f

The field R of real numbers is also a Q-vector space and we shall use the notion oflinear 
independence accordingly. If (x.) is a sequence of real numbers which are linearly 
independent over Q we shall simply say that the numbers x., the sequence (x.) or the set 
x = (Xp x , ...) are independent.

We shall assume that the lattice 12 is spanned by the complex numbers = Oj + 
co2 = aQ + iß2, o-p a2, f ß2 e R. and that the indices are chosen such that tv/y - af = 
A > 0. We shall also assume that Q is not periodic in the direction of the real axis, and 
this is equivalent to the assumption that ß fl R = {0} and also to the assumption that ß 
and ß2 are independent.

We shall call a set T C relatively dense if there exists a real number L, such that 
every closed interval / CZ R of length L contains the real part of at least one element of T. 
By Kronecker’s theorem and the Bohl-Wcnnberg theorem ([6] p. 145, footnote) the 
following statement holds:

For every å > 0 and everyy e R the set of numbers co € Q with imaginary part in the 
interval [7 — <5,y + <5] is relatively dense.

We shall consistently use z with or without indices as notation for a complex number, 
and always with z - x + iy and the indices repeated on x andj. To a bounded interval 
/CZR corresponds a strip 5) = {z |y € I}. A strip SCZ C is a set defined in this way. We 
shall write / for the interval defining .S'. Mostly, we have / - [- A, 4] with some A > 0 
and we shall then write 5 for S .

Most of the functions considered here will be continuous functions g: C —> C, but not 
always holomorphic. We define the absolute value |^| by |g| (z) - |gU) | • We shall permit 
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ourselves the abuse of notation of confusing a function with its value, e.g. by writing 
’’the function g(zf7z” meaning ’’the function g: C —> C defined by g(z} = g(z)e7z”. For 
T 6 C we use the notation g: C —» C for the translated function gfz) — ^(^+t). For 
£ > 0, A > 0 we call reCan (e, /^-translation number ofg if |gT(z) ~g(z) | = efor every 
Z E SA. According to Bohr’s definition g is almost periodic ifg is continuous and the set of 
real (e, A)-translation numbers is relatively dense for every E > 0, A > 0. This definition 
is equivalent to Bochner’s definition, according to which g: C —> C is almost periodic if^ 
is continuous and every sequence (t. \j e N) of real numbers has a subsequence (f.) such 
that the sequence (g .) converges uniformly in every strip. This can be generalized in 
the following way:

Proposition 1. Let g: Q—^Qbe almost periodic and let S be a strip. Then every sequence (r.) of 
complex numbers v € S has a subsequence (f.) such that (g*.) converges uniformly in every strip.

Proof: We write T = p.+ io and we can then choose the subsequence (r.) with f. = p + 
. . ; U j -r • ■ 7 7 7z<7. such that (g .) converges uniformly in every strip and (<7.) converges to a limit <7. 
Tlien, obviously' (gp.+.°) converges uniformly in every strip, and since g is uniformly 
continuous in every strip, the sequence (gT-~gp-+ia) tends to 0 uniformly in every strip, 
and the statement follows.

We shall use the following statement, which is pure function theory and not very 
exciting:

Proposition 2. Let JS denote the C-vector space of entire functions bounded in every strip with the 
Fréchét-space topology corresponding to uniform convergence in every strip. LetCZ .Z?be the subset 
of functions g: C —> C with g_1(0) equal to Q or C. Then is a closed subset of./?.

Proof: We shal prove that is open. That h means that h: C —> C is entire 
and that there is either a number co 6 ßwith Å(to) ¥= 0 or a number^ eC\ß with h (^) = 
0. In the first case it is obvious that h is in the interior of.ZÄ. In the second case there 
is a disc D CZ C with center z^ and positive distance from Q, and then |/z| has infimum k > 
0 on the boundary of D and according to Rouché’s theorem every entire function 
approximating h with accuracy better than k on the boundary of D has a zero in D and 
that proves again that h is in the interior of.zA.-/. That finishes the proof.

We shall start in earnest on our non existence proof. From now on f: C —* C is an 
entire function which is also almost periodic and satisfies thatj (0) = ß. Until the end 
of section 4 we shall use f exclusively as notation for this particular function.

Lemma 1. To 8 > 0, ö > 0, A > 0 corresponds E > 0 such that every (s', A + <5)-translation 
number T off has a corresponding (e, A)-translation number co e Q off with |r- to| = <5.
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Proof: Let P denote the closed parallelogram with corners ± - c^ ± - co? and P(r), T = 0 
the set of numbers z e P with |^| = t. With T0=-min{|co| | co cß\ {0}} we define k: [0, tq] 
—> [0, oo[ by k(t) = inf |/|(T(t)). We choose T] > 0 such that t: = d, = rQ and |/(^) - 

/(•^)| = - for zl, Z2 £SA+0, \z2 -^| = T[. Next, we choose s' c]0, -[ such that s' < firfi For
the given (s', A + d)-translation number rof/we choose co 6 ßsuch that T- co eP Since 
/(—co) = 0, we have |/(r- co) | = s', hence r- co i Pfifi but that implies that |r- co| = r 
< d. For £ 6 S] we have £ - (r- co) e S' and we get the estimate

l/U + w) ~/U)l
= l/fc + COj ~f(Z + CO — T) I + \f(z - (T- CO)) -f(z) \ = s' + I £,

which proves the lemma.

Lemma 2. For A > 0 we define S fir) as the subset of points ofS with distance = rfrom Q and we 
definek4 : [0,rQ] —» [0, ^[bykfir) = inf |/|(S'4(r)) with rQ as in the proof of Lemma 1. Then k (is 
strictly positive on ]0,rf)].

Proof: We do it indirectly assuming that kfifi = 0 for some tj 6 JO, r ]. Then there is a 
sequence (z) with Z- f ^4(/) and (f(zfi) 0. Let Tbe the parallelogram from the proof of 
Lemma 1. We choose (co.) with co 6 ß such that z- co. e P,j c N. By replacing (z) by a 
convenient subsequence (which we shall still denote (£.)) we can according to Proposi­
tion 1 assume that (ffi) converges uniformly in every strip to an entire function f: 
C ■—> C, and by the compactness of P we can further assume that (z.~ co) a e P. Since 
(z~ (a + co.)) —* 0 and /is uniformly continuous in every strip, we have also (/Z + co.)) 
—> 0, but (f(a + co.)) = (fa)(af f(a), hence f(a) = 0. But Z- € S4(?j) implies that z. 
- co 6 P(r), and we have f 6 . -Z, J 6 N and Proposition 2 yields that fie . Z, hence 
fi' (0) = ß in contradiction to f(a) - 0. That proves the lemma.

Lemma 3. With P as in the proof of Lemma 1 and b = max{ [y| | z € P} we define fias the closure in
T e R}- For every fe Tfihere is then an a e P such thatjfi'fiT) = Q. Further, for A > 0 and 

k^ as in Lemma 2 we have |/(^) | = k^fir) for every z € S' zot’Z/t distance = rfrom every zero off

Proof: There is a sequence (t.) of real numbers such that (ffi —>/uniformly in every 
strip. We choose (co) with co 6 ß and r. - co e P. By replacing (r) by a convenient 
subsequence we can assume that (r - co.) —> -a, and since P is symmetric, we have a e P. 
Since (t - (co- a)) —> 0 and/is uniformly continuous in every strip, we have (fw_a) f 
and (f ) —* f uniformly in every strip. Since/ €. Z, the first statement in the lemma 
follows from Proposition 2. By Lemma 2 it is quite obvious that !//■?) I = ^4+i(r) f°r 
every z S' , and the last statement follows by passage to the limit. This ends the proof.
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The Fourier exponents of f

Let g : C —> C be an arbitrary entire almost periodic function. The function a : R —-> C 
defined by
a(k) = lim^^ dx satisfies that A - {Å e R | a(Å) =# 0} is at most
denumerable so that we have a Fourier series a{X)e2m^'. The main theorem in the 
theory of almost periodic functions states that the Fourier series is summable with sum 
g(f) and uniformly in every strip. In a more precise form this means that there is a 
function Å :/A x N[0,1] with the following 3 properties:

(1) The set {Å 6 A | k(f, ri) =# 0} is finite for every n E N.
(2) The sequence {k(f, n)) tends to 1 for every fixed Å 6 A .
(3) The sequence (5 ) of finite sums

sfz) = k(f, n)a(Å,)e2jT'^ tends to g(f) uniformly in every strip.
?

The vector space ff R spanned by A$ has a base y = (yp y2, ...). It may be a finite 
base y = (y, ..., y ), but we shall formulate the following investigations as if the worst 
happens and only occasionally refer to the rather obvious changes to be made if the 
basis is finite. By the way, it is easy to see that there is an entire almost periodic function 
h : C —> C such that has the base infinite.

It is very important for our investigations that there is a fundamental relationship 
between the translation numbers of g and the base y. This is described in detail in [1] 
where it is used in the proof of the approximation theorem, and the main points are 
summarized in [6] p 144-145 and 149-150. Unfortunately, the results are not for­
mulated in terms of the base. We shall reformulate them and add a few remarks in way 
of proving them.

In this connection we must consider some Diophanthine inequalities of the form 
I yr- c| = ö ( mod n!Z) with d > 0; y, c 6 R, n e N. That T e R is solution of the inequality 
means that there is a v eZ such that |yr-c-n!v| = <5. In connection with the base y we 
consider the following system of simultaneous Diophanthine inequalities where the 
second line gives the alternative form for y = (y[5 ..., y )

|yr| = Ö (mod n!Z),J = 1, ..., n 
l'j/.rl = ö (mod tt!Z),j = 1, ..., m

The relationship between y and the translation numbers of g is given by the pro­
position:

Proposition 3. To e > 0, A > 0 correspond å > 0, n 6 N such that every solution of (1) is an 
(e, A)-translation number of g.
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g
In fact, Tf Risan (e, A)-translation number ofg if it is an (- A)-translation number 

£
of the finite sum 5 which approximates g in S with accuracy If Qis the number of 

£ terms in 5 , it follows that T is an (e, T)-translation number T of g, if it is an (-—," 2,q
/l)-translation number of each term k{X, w) a {X}elm)fi and this will happen, if T satisfies 
a set of Diophanthine inequalities |Å.r| = <5‘ (mod Z), ; = 1, ..., q. We express the Å. in 
terms of the y and choose n large enough such that the denominators in the coefficients 
in these expression are divisors in n\ and the proposition follows easily.

There is also a reverse relationship:

Proposition 4.IfX E R has the property that to every A > 0, b > 0 exists an E> 0 such that every 
(e, A)-translation number T og g satisfies the Diophanthine inequality | Ar| = b {mod Z), then Å E 
Ä.

g

Proof: IfÅ i. A , the numbers Å, y, y,... are independent and Kroneckcr’s theorem tells
]

us that for every c) > 0, n E N some solutions of (1) also satisfies the inequality | Ar— - | =

<5 (mod n'.Z). Hence, for b < - the condition in the proposition is not satisfied by Å. This 

proves the proposition.
We shall now return to the hypothetical function fi but first some formulas con­

cerning Q must be established. For co= tv+ iß E £2 with co= n co + mop,n ,n eZ we have

a = n} Oj + ß = n}ß{ + n^ß2.

Eliminating either n or n between these, we get the 2 sets of relations

(2)

(3)

For the function f we shall simply use A as notation for the set of Fourier exponents and 
A for the vector space spanned by A. The following lemma tells that A is at least 
2-dimensional and, hence,fis not limit periodic.
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Lemma 4. O
A’ A

e A.

Proof: For d > 0 we choose <5, = tvh—i—r and for A > 0 we can by Lemma 1 choose e > 0 1 Ifll+H
such that every (s, A + (^-translation number of rof/has a corresponding a>= a + iß = 
n^(D} + ^(t»2 6 Q with IT — co I = Ö

In particular, if T 6 R we get \ß\ = Ö and (3) yields

hence |t • _1 + n I1 A 21 Ö, which is exactly 4
A

T = Ö ( mod Z). Thus, it follows from

Proposition 4 that E A, and that E A is proved in the same way.

Since are independent, we can choose the base y with y=_l,y=_L and from 
A' A 1 A 1 A

now on we shall assume that yis chosen like that, and the subspace of A spanned by y 
and y will be called the compulsory subspace.

The spatial extension of f

We shall introduce some functions defined on spaces of pairs (x’,y) of a finite or infinite 
sequence x = (x^ ..., x^ or x = (xJ} x of real numbers, and a real number y. We shall 
denote the spaces R" x R or R x R accordingly and they shall always be organized 
with the product topology. We shall formulate everything for Rx x R only.

If I GZ R is a bounded interval, we shall call the set Slf = {(x;jy) c R' x R \y e 1} the 
slice corresponding to I, and a slice shall be a set defined in this way by some bounded 
interval. If/= [-A, A], we shall also write SI J for Sl{. A function G:RX xR-* C is called 
limit periodic if it is continuous and satisfies the following condition: To E > 0, A > 0 
corresponds n e N such that | G!(x";_y) - G(x';_y) | = e if | y| = A and p - xj ,... x" - x' are 
integers divisible by nl. It is easy to prove that G is limit periodic if and only if it can be 
approximated uniformly in any given slice with any given accuracy by a continuous 
function depending only on finitely many variables x{, ..., x ;y and with an integral 
period in x,..., x . However, we shall not use that.

Proposition 5. Let G : R xR-^C be limit periodic and y = (y/} y?,...) independent. We define 
g : C —> C by g(g) ~ G(yx;y). Then g is almost periodic and A^ is contained in the vector space 
spanned by yx, y. <*
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Proof: Let e> 0, A > 0 begiven. We choose d> 0, n cN such that | G(x";j) - G(x';j>) 

if either |x.' -x'| = ö,j = 1,..., n; |^| = A orx' -x.'forj - 1,..., n is an integer divisible by n! 
and [y| = A. Let rbe a real solution of the inequalities (1). We can choose integers V,..., 
V; such that for every xcRwe have | y(x+r) - (yx+nl v)| = 0,j = 1,..., n. With x = (yx + 
nlVp..., y^x Y„+lx> Y„+2X’---) we have the inequalities

|g(^ + t) - GU' ;j)l = I ; |G(x'j) -g(s)l =

which prove that r is an (e, A)-translation number ofg. Since the set of real solutions of 
(1) is relatively dense, this proves that g is almost periodic.

Let A be a Fourier exponent of g and T an (f, A)-translation number ofg for some 
E > 0, A > 0. Then we have

T
«(Å) (?"“'-!) - Hm I j0 U(x + T)

which yields the estimate

fl(Å)| |^-!| ^ e.

On the other hand, if |At - -| = - (mod Z) we obviously have 2 4 7

a(A)| \e2m^T - 1| = |a(A)

If A is not in the vector space spanned by yf, y2,..., some solutions of (1) will by

Kronecker’s theorem also satisfy that

A)-translation numbers of g for any A > 0 and any E < |a(y)|. Thus A is in the space 
spanned by y} y2,..., and that ends the proof.

With G and g as in Proposition 5 we shall call g the diagonal function of G 
corresponding to y and G a spatial extension of g corresponding to the base y of A . The 
subspace C - {(yx;jy) | x,y e R} will be called the y-diagonal in R x R and the affine 
subspaces C = {(x + yx;y) | x, y 6R}, x 6 R will be called the analytic planes in R x R.

Proposition 6. Let g : C —> C be entire and almost periodic, and let y = (y(, y2,...) be a base for 
A Then g has a uniquely determined spatial extension 6: R x R-» C. andfor every x e R the 
function g*: C —» C defined by g(z) — G(x+yx; j) is entire and almost periodic and belongs to the 
closure T, of | r e R} CZ
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Proof: With X = R x Z”; n e N we define W : X —» Rx byn 7 ' n n J

vi>->Y= (v + - > V +W- w>->-

For each n e N the set Af = t/i (X) x Rc^R x R is a system of analytic planes. Since ip^ is 
injective, we can define G„ ; M, —* C by

v);= g(x + ?» = ^U).

For every x € tyn(Af) we have x + yx € V (X ) for every x e R so that we can define g„ * : 
C —> C by gn (z) = Gfi(x + yx;j). Further, there is a r e R and v^..., v e Z such that x = 
ip (r; y,..., v), hence x + yx = 1? (x + r; y,..., v) and g = g . We have thus g gT.Tnv ’ 1’ ’ u7’ ~ J- ’1’ ’ n' °n,x ör °n,x g

Let us consider an arbitrary x° € Rx with its corresponding analytic plane C o. For 
n eN we define

t7(l°) = (x e Rx I |x.-x°| ^,j= 1,...,72}, 
« i j j 2n1J

and the (x°) constitute a base for the neighbourhoods ofx° in R“. For q, n eN we have 
t^(T) A G^x°) =# 0 if the Diophanthine inequalities

(4)

are satisfied by some x e R. By Kronecker’s theorem this is always the case. We have 
thus proved that the sets ip^XJ, n G N are dense in Rx. We are interested in the analytic 
plane C o, and by its n th set of neighbour planes we mean the set K (x°) of planes C with x 
e ^(T) A t/(x°). Similarly the set PF (x°) of corresponding entire functions^ * is called 
the ?2th set of neighbour functions of Ce.

For (p G .Øand A > 0 we define the norm ||<p|| = sup | (p\(S ), and the system of norms 
II • II A e]0,°° [ will then induce the Fréchét space topology on For a set. C .0 we 
can define a generalized diameter by diam^ . /0 = sup{||l/>-(jp||4 | (p, tp e. /X}. It is an 
increasing function of A and it may of course be infinite. For x, x_ G ) A ^n(^°) we 
haver, teR and v= (vp..., v), y = (v',..., v), v, veZJ = 1,..., n andx = t^(x,y), x = ipn(x 
+ T,v'). The corresponding functions of IV (x°) are g = g and g , = g . But x and x+T 

satisfy (4) with q = n, hence, r satisfies (1) with <5 = —, and Proposition 3 implies that 

diam4 PF(x°) —> 0 for n —» oo and fixed A, and uniformly for x° e R \
For n, q eN we observe that thosex = ip (x,V) which have l7,..., V divisible by (72 + 1) ... 

(72 + q) are also in ) and it follows that some functions of IT(xo) are also in 
IV (x°). With IV(x°) = Ux IV (x°) we can thus conclude thatn+qx~ ’ ' q=Q n+q'~ '
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diam. 14'(x°) = 2 diam IF(x°)./1 w' ' A nx '

x = x°a2 - x°ax + q2a{ - q^y = At = x°ß2 - x°ß} + qJ3} - qfi2,

and % , x4,... are determined by the equations in the second row. We arc not really 
interested in these additional unknowns. We get

z = x+ ty = x°æ2 - x°æ1 + q2o)x- q}cor

We have thus proved that £ intersects each analytic plane in Rx x R in a translated 
lattice spanned by co and co2>

It follows from this that every function of W’(x°) for n —* 00 converges uniformly to the 
same limit function g : C —» C, and it obviously is in T. The totality of functions in 
every C constitutes a function G : R x R —» C. It follows immediately from the 1 X
construction that G is continuous and that G(yxp>) = g(z). The limit periodicity’ of G 
follows easily from the periodicity of G, since *s everywhere dense. This also 
implies that G is unique and that finishes the proof.

We could have derived it more easily from the approximation theorem, but the proof
above underlines certain structural details, which are useful in our investigations.

ß} ß2
The hypothetical function/: C —> C with the basis y = (y[? y]5...) where yj = -t, Y2 ~ /T 

has a spatial extension F : R x R —> C. We shall compute the zeros of F.

Lemma 5. F 1 (0) is the set E given by

£ = {(or/ + qx, O^t + qr %3, *4,...; At) | t, xy *4,... 6 R, q}, q2 € Z}.

Proof: We shall consider the set £ defined in the lemma and we shall prove that it is 
identical to £_l(0). First, we determine £ Pl C0 when C'o = {(x° + yx;_y) | x,y e R} is an 
analytic plane. To do that we must determine the sets (x,y, t; x„, x , ...) satisfying the 
equations

(\t + q} = yy, a2t + q2 = x° + y>x, At =
x. = x°+ y.x, j — 3, 4,....j j j J

A
With y2 =

ß2
- the equations in the top row yield
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It follows from Propositions 2 and 6 that also F !(0) intersects each analytic plane in 
R > R in a translated lattice spanned by and To prove the theorem we need 
only that the two lattices in each analytic plane are identical, and that will follow when 
we have proved that

x, x4,..., At} - 0 for t, xy x^,... e R.

By the limit periodicity of F' it is enough to prove for every ö > 0, n e N that we can find 
co 6 co = oc + iß, such that

|^a- x.| = d (mod n!Z), j - 1,..., n; = OjZ, x? = a^t, \ß - At\ = ö. (5)

We write co = n}co} + n}, e Z, and (2) and (3) yield

A
ya - x - y. n, - x.+ 
J J J ß, i J

J J J P2 J /J2 (6)

We introduce y = max(|}'-^-| | j - 1,..., n; £ = 1, 2) and 0' = 1+^ . Then w = a + iß = 

n^+n^co? will satisfy (5) if^, n2 satisfy first that \nfy+n,fl2 - At\ = 0' and second for each 
j e N one of the following Diophanthine inequalities

or

= <5’ (mod n\7ß or | - n | = 0’ (mod n!Z)

nJ = 6' (mod n!Z) or = 0' (mod z?!Z).
(7)
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The second and third of these are satisfied by n = n\v., v f Z,j= 1, 2. The inequality 
+ - ~ becomes

1«!/^ + “ Ål\ = ö‘.

We observe that the first and the fourth of the inequalities (7) follow from this last 
inequality and, further, that the last inequality is satisfied by some v? eZ, if satisfies 

that In\ ~-ß /| = (mod n!Z). Hence, (5) will be satisfied, if 6Z can be chosen as a 

solution to the following system of Diophanthine inequalities:

= <5' (mod zz’Z), j = 3, 4,..., n.

By a slightly advanced form of Kronccker’s theorem we have that this system has 
integral solutions for all t, x, j = 3, 4,..., if and only if no linear combination of the 

coefficients n\ 3, 4,... with integral coefficients has an integral value different
from 0. In other words, solutions exist, if

implies that = ••• = = 0. However, the equation can be written

and Y3, y4,... are independent. That proves the lemma.

Lemma 6. Let R2 x R C Rv x R be the (x(, %2; andp : Rf x R R2 x R the
projection. Then EQ = E fl (R2 x R) is a system of parallel straight lines and E~x (0) = E - 
p~} (Eq). Further Efi contains exactly one straight line Lq q through each point (^, q^, 0) of the unit 
lattice in R. The sets p~} (E? ? ) are the components of E and intersects the analytic plane C in the
point corresponding to z = - dff

This is nothing more than a reformulation of Lemma 5 supplemented by very few 
and very elementary computations.



MfM 42:3 137

The non existence of f
The spatial extension F of/has a restriction cp : R2—> C defined by cp(x, x^) = F(x}, x , 0, 
0,..., 0). We know that cp-1 (0) is the unit lattice in R2. The midway net Af CZ R2 
is defined as the set of all points (x(, x2) with either x( or x2 equal to- + some integer. It 

divides R2 in unit squares such that (p has one zero in the center of each square.

Lemma 7. inf |<p|(Af) = k> 0.

Proof: In each analytic plane C = {(x + yx;y)\x,y e R} we place discs defined by x = 
a + p cos 6,y - p sin 0; 0 e R, p e]0,r[ for some r e]0,rQ[ (Lemma 2) and for each co = 
a + iß 6 £?. The union of all these discs is by Lemma 5 the set of all points of R x R 
given by

(a;/ + q} + yxp cos 0, af + / + Y2P cos 6,
x + Y.T cos X4 + ^P cos At + p sin 0)
0, t, xy x4,- 6 R. pe[0,r], ?2 e Z.

Let us denote this set £ and its intersection with R2xR by É\ It follows immediately 
from the expression or from Lemma 6 that £ = p~l (£j and we have

T = ajt + qx + ^-cos a2l + / + ~^~cos At + p sin 0^ 11, 6 6 R, p e [0, r], q{, q2 eZj.

The intersection of £° with the (xj, x2)-plane is

£ = <(?1 + cos Q~a\ sin

?2 + cos a‘2 sin 0)) I 3 e R P E t0’^’ ?2 6

This set consists of elliptic discs with centers in each point of the unit lattice and they 
are exactly alike and oriented in the same manner. We choose a fixed value of r such that 
e n M = 0.

r
We know from Proposition 6 that the restriction of£to an arbitrary analytic plane is 

a function of T Hence, the lemma follows from Lemma 3 with A > 0 chosen arbitrarily. 
This ends the proof.

Lemma 8. There is an orientation of the (x, x^-plane such that the variation of the argument of cp 
along a small circle around a lattice point and in the direction given by the orientation of the plane is 
equal to 2jt for every point of the unit lattice.
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Proof: For u € [0,1] andj/^ = (yp y2, wy3, wy4,...) wc have the family of planes C - {y x\y) | 
x,y e R) in R x R and for each co = a + iß e Q and r e]0, rQ[ we get a family of circles

From Lemma 6 follows that T is a continuous family of circles in R°° x R \ F 1 (0). We 
choose the orientation of each plane C such that the angle from the x-axis to the y-axis is 

+ Then, the variation of the argument ofFalong T has its value independent ofzz, and 

since the restriction ofFto C] is an entire function we conclude that /’’has its variation of 
argument equal to 2æ along cz Q for every w f ß.

From now on we shall consider only the restriction F : R2 x R —> C of F defined by 
F(xj, ~ x<2’ have CQ cRx R it will be convenient to think of
R2 x R as our physical space with thejy-axis vertical, and C is then raised as a vertical 
wall, which divides R x R in two half spaces K and V such that the lines L slant 
downwards in I' and upwards in F. The set F from the proof of Lemma 7 is the union 
of disjoint elliptic cylinders such that each L (/ is the axis of symmetry of one of them. 
The circles F induce an orientation of each cylinder and we know that the variation of 
the argument ofFalong a curve encircling a cylinder once is 2jt. In particular this holds 
for the ellipses, in which F° intersects the (xp x2)-plane. The orientation of the (x, 
x )-plane corresponding to this can be determined in the following way: Start with a 
circle T CZ CQ with a diameter in the (xp x2)-plane and oriented according to C . Rotate it 

an angle ~ about the horizontal diameter such that its upper half goes into Vd, and it 

yields the orientation. This finishes the proof.

It must be obvious to everybody that the lemmas 7 and 8 contradict each other, but 
we must go through the details anyway such that our proof is not left unfinished.

Theorem 1. Let L2 CZ C be a lattice with no real period. Then no entire functionf: C —> C almost 
periodic in the direction of the real axis will satisfy that/^'(0) = Q.

Proof: If the theorem was false, our hypothetical function f would exist and the lemmas 
7 and 8 would hold for some limit periodic function : R —> C. Let /be the oriented 
boundary of a square on the midway net M and the length of the sides n\ for some large 
n e N. Let v e R be the variation of the argument of cp along T.

By Lemma 8 and the ordinary routine we get v — 2æ(?z!)2.
We choose n large enough such that for every (x]5 x ) € R2

x2 + n!) - <jp(xp x?)| ^^k, \<p(x} + nl, x2) - cpf}, x2)|
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Then the variations of the argument of cp along the sides of/"parallel to the Xj-axis taken
X V 4" fl ’)

together amounts to the variation of the argument of —2 * >—, but this quotient is 
JTcontained in the angle defined by |arg q = - hence the variation of the argument along 

these sides amount to at most - The same holds for the two other sides, and since the 

variation of the argument along Tis an integer multiplied by 2tt, we can conclude that 

y = 0.
This proves the theorem.

Application of Weierstrass' o-function
We shall use the notations Q, co}, m2, Oj, f [f A as before. With Q' = Q \ {0} 
Weierstrass’ (J-function is defined by

It is an entire function oforder 2 with o 1 (0) = ß, and though it is not periodic, there are 
constants r]2 e C satisfying

- n2^ = 2m (8)

such that <7 has the periodicity property

+ m) J =1,2

and for co = n CO + n^co with 7/ = we have generally

O{z + <o) =

From this follows that the function f : C —> C defined by 

has period 2 m and even co if 7^ and n are even. We remark thatj^ depends only on the 
direction of co not on co itself. We supply (3) with a corresponding formula for T] so that 
we have
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'n
and if wc let co while /3 —> 0, the ratio — will tend toco

A

and^(^) tends to the limit

/(z) = eAz~

an entire function with f~} (0) = ß and obviously satisfying

ff + tt)) = ± J\z).

We do some computation

*1~ YM = 'Äß^^A ~ + Arhß~ ^~n2A +

= - aAKß~

but since

= ("1 “ = WA ~ W2^v

it reduces to

_ yft) = 1 (-^i

by (8). Thus we have

/(t+a>) = ±^(j+2»y(^)

and with co = a + iß, Z = iy this implies

l/k + ®)| = e2"4.'4's'i/W|.

We know from Theorem 1 thatf\ C —» C is not almost periodic. Nevertheless, we have
the following

Theorem 2. The function |/| : C —» R is almost periodic. 
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Proof: We shall first prove that/is bounded in every strip, hence, we consider S' d > 
0. We choose L > 0 such that every interval on R of length L contains a number a for 
which there is a ß e [-1, 1] with a + iß = co g £2. We define K- max|/|([0, L\ x [-d - 1, 
A + 1]) and for an arbitrary £ 6 we can then find co = a + iß G £2 with \ß\ = 1 and 
x - ex G [0, L], hence z~ co G [0, L] x [-d - 1, d + 1], It follows that

2^(.4+l)
= Å e ,

and this proves that/is bounded in S' i.e. in every strip. Since/is entire, this implies 
that/is uniformly continuous in every strip.

Let E > 0 be given. We choose / e]0, 1] such that for every z and every co = a+ iß 
with \ß\ = 6, we have

1/(2 + w) -/(^ + o') I =^-

With the K introduced above we choose <5>2 > 0 such that for \ß\ < /

and with ö = min(ö1, <5 ) for \ß\ = ö we have

and together with the preceding inequality this proves that O'is an (e, d)-translation 
number of |/|, and that proves the theorem.

Theorem 3. With £2 — {co G C \ co G £2} there is an entire almost periodic function g : C C of 
order 2 and with g~x (0) = £2 U £2 such that the elements of ßU £2 are simple zeros, except 0 which is 
double.

Proof: We define g by g{z) =f{z) f {z) and g : C —> C is entire of order 2 and g_1 (0) is as 
claimed in the theorem. By the multiplication theorem |g| : C —» R is almost periodic, 
hence g is bounded in every strip. For £ = x 6 R we have g(x) = |g| (x), hence, g is almost 
periodic on the real axis. But this implies that g is almost periodic in every strip ([2], p. 
253). This proves the theorem.

A more general entire almost periodic function with g~} (0) ZD £2 could be defined by 
gßz) ~f{z + a) f (z + ä) for some a g C.

\f(Z + ") I - l/Wl
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